Bridging art and engineering using Escher-based virtual elements

The geometric shape of an element plays a key role in computational methods. Triangular and quadrilateral shaped elements are utilized by standard finite element methods. The pioneering work of Wachspress laid the foundation for polygonal interpolants which introduced polygonal elements. Tessellations may be considered as the next stage of element shape evolution. In this work, we investigate the topology optimization of tessellations as a means to coalesce art and engineering. We mainly focus on M.C. Escher’s tessellations using recognizable figures. To solve the state equation, we utilize a Mimetic Finite Difference inspired approach, known as the Virtual Element Method. In this approach, the stiffness matrix is constructed in such a way that the displacement patch test is passed exactly in order to ensure optimum numerical convergence rates. Prior to exploring the artistic aspects of topology optimization designs, numerical verification studies such as the displacement patch test and shear loaded cantilever beam bending problem are conducted to demonstrate the accuracy of the present approach in two-dimensions.

[1]  B.,et al.  Natural Neighbor Galerkin Methods , 2001 .

[2]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[3]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[4]  Glaucio H. Paulino,et al.  Adaptive dynamic cohesive fracture simulation using nodal perturbation and edge‐swap operators , 2010 .

[5]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[6]  John E. Bolander,et al.  Irregular lattice model for quasistatic crack propagation , 2005 .

[7]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[8]  Kai Hormann,et al.  A quadrilateral rendering primitive , 2004, Graphics Hardware.

[9]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[10]  L. B. D. Veiga,et al.  A virtual element method with arbitrary regularity , 2014 .

[11]  Jasbir S. Arora,et al.  Continuum Topology Optimization for Concept Design of Frame Bracing Systems , 1998 .

[12]  Stéphane Bordas,et al.  Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .

[13]  Joe D. Warren,et al.  Barycentric coordinates for convex polytopes , 1996, Adv. Comput. Math..

[14]  N. Kikuchi,et al.  A homogenization method for shape and topology optimization , 1991 .

[15]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[16]  R. Penrose Pentaplexity A Class of Non-Periodic Tilings of the Plane , 1979 .

[17]  B. Moran,et al.  Natural neighbour Galerkin methods , 2001 .

[18]  大崎 純,et al.  Optimization of finite dimensional structures , 2011 .

[19]  Anders Klarbring,et al.  An Introduction to Structural Optimization , 2008 .

[20]  E. Hinton,et al.  Homogenization and Structural Topology Optimization: Theory, Practice and Software , 2011 .

[21]  A. Groenwold,et al.  On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem , 2008 .

[22]  Glaucio H. Paulino,et al.  Connecting architecture and engineering through structural topology optimization , 2014 .

[23]  M. Zhou,et al.  Generalized shape optimization without homogenization , 1992 .

[24]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[25]  J. Bolander,et al.  Fracture analyses using spring networks with random geometry , 1998 .

[26]  Somnath Ghosh,et al.  Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method , 2011 .

[27]  Glaucio H. Paulino,et al.  Topology optimization using polytopes , 2013, 1312.7016.

[28]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[29]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  Joseph E. Bishop,et al.  Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations , 2009 .

[31]  Arun L. Gain,et al.  Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation , 2012 .

[32]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[33]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[34]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[35]  Martin Reimers,et al.  Mean value coordinates in 3D , 2005, Comput. Aided Geom. Des..

[36]  Pritam Ganguly,et al.  Spatial convergence of crack nucleation using a cohesive finite‐element model on a pinwheel‐based mesh , 2006 .

[37]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[38]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[39]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[40]  Glaucio H. Paulino,et al.  Layout and material gradation in topology optimization of functionally graded structures: a global–local approach , 2010 .

[41]  Behrooz Hassani,et al.  Homogenization and Structural Topology Optimization , 1999 .

[42]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..

[43]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[44]  Glaucio H. Paulino,et al.  PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes , 2012 .

[45]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[46]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[47]  Norman H. Christ,et al.  Weights of links and plaquettes in a random lattice , 1982 .

[48]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[49]  Kokichi Sugihara,et al.  Two Generalizations of an Interpolant Based on Voronoi Diagrams , 1999, Int. J. Shape Model..

[50]  Helmer Aslaksen M. C. Esther’s legacy: A centennial celebration , 2004 .

[51]  Robert Fathauer FRACTAL TREES , 2017 .

[52]  V. D. Ivanov,et al.  The non-Sibsonian interpolation : A new method of interpolation of the values of a function on an arbitrary set of points , 1997 .

[53]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .

[54]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .