Greedy bisection generates optimally adapted triangulations

We study the properties of a simple greedy algorithm for the generation of data-adapted anisotropic triangulations. Given a function f, the algorithm produces nested triangulations and corresponding piecewise polynomial approximations of f. The refinement procedure picks the triangle which maximizes the local Lp approximation error, and bisect it in a direction which is chosen so to minimize this error at the next step. We study the approximation error in the Lp norm when the algorithm is applied to C2 functions with piecewise linear approximations. We prove that as the algorithm progresses, the triangles tend to adopt an optimal aspect ratio which is dictated by the local hessian of f. For convex functions, we also prove that the adaptive triangulations satisfy a convergence bound which is known to be asymptotically optimal among all possible triangulations.

[1]  Long Chen On minimizing the linear interpolations error of convex quadratic functions and the optimal simplex , 2008 .

[2]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[3]  J. Mirebeau Optimal Meshes for Finite Elements of Arbitrary Order , 2010, 1101.0612.

[4]  Wolfgang Dahmen,et al.  Approximation Classes for Adaptive Methods , 2002 .

[5]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[6]  I. Daubechies,et al.  Tree Approximation and Optimal Encoding , 2001 .

[7]  Jean-Marie Mirebeau Optimally adapted meshes for finite elements of arbitrary order and W1, p norms , 2012, Numerische Mathematik.

[8]  Jean-Marie Mirebeau,et al.  Adaptive and anisotropic finite element approximation: Theory and algorithms , 2010, 1101.1555.

[9]  Emmanuel J. Candès,et al.  Curvelets and Curvilinear Integrals , 2001, J. Approx. Theory.

[10]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[11]  M. Rivara NEW LONGEST-EDGE ALGORITHMS FOR THE REFINEMENT AND/OR IMPROVEMENT OF UNSTRUCTURED TRIANGULATIONS , 1997 .

[12]  Long Chen,et al.  Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations , 2004, IMR.

[13]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[14]  Nira Dyn,et al.  Adaptive multiresolution analysis based on anisotropic triangulations , 2012, Math. Comput..

[15]  Paul-Louis George,et al.  Mesh Generation and Mesh Adaptivity: Theory and Techniques , 2007 .

[16]  Weiming Cao,et al.  On the Error of Linear Interpolation and the Orientation, Aspect Ratio, and Internal Angles of a Triangle , 2005, SIAM J. Numer. Anal..

[17]  Yuliya Babenko,et al.  Asymptotical behavior of the optimal linear spline interpolation error of C2 functions , 2006 .

[18]  Long Chen,et al.  Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..