An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics.
暂无分享,去创建一个
Liangliang Wang | Shijia Wang | Alexandre Bouchard-Côté | A. Bouchard-Côté | Shijia Wang | Liangliang Wang
[1] S. Tavaré. Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .
[2] Alexei J Drummond,et al. Guided tree topology proposals for Bayesian phylogenetic inference. , 2012, Systematic biology.
[3] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[4] Jr. G. Forney,et al. The viterbi algorithm , 1973 .
[5] Ming-Hui Chen,et al. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. , 2011, Systematic biology.
[6] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[7] Louis J. Billera,et al. Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..
[8] Michael J. Landis,et al. RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language , 2016, Systematic biology.
[9] Arnaud Doucet,et al. An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.
[10] T. Lai,et al. A general theory of particle filters in hidden Markov models and some applications , 2013, 1312.5114.
[11] John P. Huelsenbeck,et al. MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..
[12] B. Larget,et al. Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees , 2000 .
[13] Arnaud Doucet,et al. Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method , 2015 .
[14] Xiao-Li Meng,et al. Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .
[15] Radford M. Neal. Annealed importance sampling , 1998, Stat. Comput..
[16] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[17] M A Newton,et al. Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods , 1999, Biometrics.
[18] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[19] Michael Defoin-Platel,et al. Clock-constrained tree proposal operators in Bayesian phylogenetic inference , 2008, 2008 8th IEEE International Conference on BioInformatics and BioEngineering.
[20] J. Huelsenbeck,et al. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. , 2004, Molecular biology and evolution.
[21] N. Chopin. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.
[22] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[23] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.
[24] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[25] Dilan Görür,et al. Scalable Inference on Kingman's Coalescent using Pair Similarity , 2012, AISTATS.
[26] B. Rozovskii,et al. The Oxford Handbook of Nonlinear Filtering , 2011 .
[27] D. Robinson,et al. Comparison of phylogenetic trees , 1981 .
[28] Sandhya Dwarkadas,et al. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference , 2002, Bioinform..
[29] M. Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.
[30] Gareth O. Roberts,et al. Towards optimal scaling of metropolis-coupled Markov chain Monte Carlo , 2011, Stat. Comput..
[31] Yan Zhou,et al. Toward Automatic Model Comparison: An Adaptive Sequential Monte Carlo Approach , 2016 .
[32] Clifford J. Maloney,et al. Systematic mistake analysis of digital computer programs , 1963, CACM.
[33] Nicolas Lartillot,et al. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating , 2009, Bioinform..
[34] A. Pettitt,et al. Marginal likelihood estimation via power posteriors , 2008 .
[35] Ming-Hui Chen,et al. Choosing among Partition Models in Bayesian Phylogenetics , 2010, Molecular biology and evolution.
[36] R. Kohn,et al. Speeding Up MCMC by Efficient Data Subsampling , 2014, Journal of the American Statistical Association.
[37] M. Rattray,et al. Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution. , 2002, Molecular biology and evolution.
[38] Nando de Freitas,et al. Bayesian Analysis of Continuous Time Markov Chains with Application to Phylogenetic Modelling , 2016 .
[39] W. D. Wallis,et al. Combinatorial Mathematics VI , 1979 .
[40] Nicolas Lartillot,et al. Conjugate Gibbs Sampling for Bayesian Phylogenetic Models , 2006, J. Comput. Biol..
[41] M. Quiroz. Speeding Up MCMC by Delayed Acceptance and Data Subsampling , 2015 .
[42] Joseph Felsenstein,et al. Maximum Likelihood and Minimum-Steps Methods for Estimating Evolutionary Trees from Data on Discrete Characters , 1973 .
[43] Arnaud Doucet,et al. On Markov chain Monte Carlo methods for tall data , 2015, J. Mach. Learn. Res..
[44] M. Newton. Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .
[45] M. Holder,et al. Phylogeny estimation: traditional and Bayesian approaches , 2003, Nature Reviews Genetics.
[46] A. Rambaut,et al. BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.
[47] Lynn Kuo,et al. Bayesian Phylogenetics : Methods, Algorithms, and Applications , 2014 .
[48] B. Rannala,et al. Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference , 1996, Journal of Molecular Evolution.
[49] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[50] Ziheng Yang,et al. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. , 2003, Genetics.
[51] H. Philippe,et al. Computing Bayes factors using thermodynamic integration. , 2006, Systematic biology.
[52] Vu C. Dinh,et al. Effective Online Bayesian Phylogenetics via Sequential Monte Carlo with Guided Proposals , 2017, bioRxiv.
[53] Michael I. Jordan,et al. Phylogenetic Inference via Sequential Monte Carlo , 2012, Systematic biology.
[54] Vu C. Dinh,et al. Online Bayesian Phylogenetic Inference: Theoretical Foundations via Sequential Monte Carlo , 2016, Systematic biology.
[55] Nando de Freitas,et al. An Introduction to MCMC for Machine Learning , 2004, Machine Learning.
[56] J. Felsenstein,et al. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. , 1994, Molecular biology and evolution.
[57] Hani Doss,et al. Phylogenetic Tree Construction Using Markov Chain Monte Carlo , 2000 .
[58] J. Geweke,et al. Getting It Right , 2004 .
[59] D. Robinson,et al. Comparison of weighted labelled trees , 1979 .
[60] B. Rannala,et al. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.
[61] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[62] J. Scott Provan,et al. A Fast Algorithm for Computing Geodesic Distances in Tree Space , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[63] J. Huelsenbeck,et al. Efficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics. , 2008, Systematic biology.
[64] Aaron M. King,et al. Infectious Disease Dynamics Inferred from Genetic Data via Sequential Monte Carlo , 2016, bioRxiv.
[65] M. Suchard,et al. Phylogeography takes a relaxed random walk in continuous space and time. , 2010, Molecular biology and evolution.