Spectral interferometry of semiconductor nanostructures

Fourier transform spectral interferometry is applied to measure both amplitude and phase of the electric field in different types of semiconductor nanostructures, thus determining the real and imaginary parts of the dielectric function. The importance of measuring the phase is shown and discussed in three studies. First, the phase measurement is used to access directly the refractive index across excitonic resonances in bulk GaAs and AlGaAs-GaAs quantum wells, with unprecedented resolution. Second, we measure the density dependence of the full dielectric function across a Fano resonance in bulk GaAs and show that this allows us to obtain some information on the collisional broadening of the usually hidden linewidth of the coupled exciton/continuum. Third, the phase is studied in a complex heterostructure, a semiconductor microcavity. We investigate and discuss the effect of the cavity detuning and of the excitation density.

[1]  J. Bigot,et al.  Ultrafast phase and amplitude dynamics of coherent transients in semiconductor quantum wells , 1996 .

[2]  A. V. Groenendael,et al.  Dispersion relations forn-order nonlinear phenomena , 1979 .

[3]  P. Lefebvre,et al.  Analytical model for the refractive index in quantum wells derived from the complex dielectric constant of Wannier excitons in noninteger dimensions , 1997 .

[4]  Morin,et al.  Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations. , 1990, Physical review letters.

[5]  G. Sonek,et al.  Dielectric properties of GaAs AlGaAs multiple quantum well waveguides , 1986 .

[6]  Grilli,et al.  High-precision determination of the temperature dependence of the fundamental energy gap in gallium arsenide. , 1992, Physical review. B, Condensed matter.

[7]  D. Chemla Chapter 3 - Ultrafast Transient Nonlinear Optical Processes in Semiconductors , 1998 .

[8]  F. Koyama,et al.  Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser , 1989 .

[9]  K. Minoshima,et al.  Femtosecond time-resolved interferometry for the determination of complex nonlinear susceptibility. , 1991, Optics letters.

[10]  C. Tang,et al.  Femtosecond interferometry for nonlinear optics , 1982 .

[11]  W. J. Caspers Dispersion Relations for Nonlinear Response , 1964 .

[12]  H. Dinges,et al.  Composition and refractive index of Ga1−xAlxAs determined by ellipsometry , 1979 .

[13]  P. J. Price Theory of Quadratic Response Functions , 1963 .

[14]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[15]  Tai,et al.  Excitonic Nonlinearities of Semiconductor Microcavities in the Nonperturbative Regime. , 1996, Physical review letters.

[16]  J. Paye,et al.  How to measure the amplitude and phase of an ultrashort light pulse with an autocorrelator and a spectrometer , 1994 .

[17]  D. Chemla,et al.  Quantum Confined Fano Interference , 1997, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[18]  Philip W. Anderson,et al.  Localized Magnetic States in Metals , 1961 .

[19]  Mansoor Sheik-Bahae,et al.  Dispersion of bound electron nonlinear refraction in solids , 1991 .

[20]  H. Casey,et al.  Refractive index of AlxGa1−xAs between 1.2 and 1.8 eV , 1974 .

[21]  Rick Trebino,et al.  Frequency-resolved optical gating with the use of second-harmonic generation , 1994 .

[22]  Lefebvre,et al.  Simple analytical method for calculating exciton binding energies in semiconductor quantum wells. , 1992, Physical review. B, Condensed matter.

[23]  Stephan W Koch,et al.  Quantum Theory of Nonlinear Semiconductor Microcavity Luminescence Explaining “Boser” Experiments , 1997 .

[24]  Lucio Claudio Andreani,et al.  Quantum well excitons in semiconductor microcavities : unified treatment of weak and strong coupling regimes , 1995 .

[25]  H. Yokoyama,et al.  Physics and Device Applications of Optical Microcavities , 1992, Science.

[26]  D. Marple,et al.  Refractive Index of GaAs , 1964 .

[27]  J. P. van der Ziel,et al.  Absorption, refractive index, and birefringence of AlAs‐GaAs monolayers , 1977 .

[28]  Chemla,et al.  Ultrafast coherent dynamics of fano resonances in semiconductors. , 1995, Physical review letters.

[29]  C. T. Seaton,et al.  Band-Gap—Resonant Nonlinear Refraction in III-V Semiconductors , 1981 .

[30]  L. Andreani,et al.  Accurate theory of excitons in GaAs-Ga1-xAlxAs quantum wells. , 1990, Physical review. B, Condensed matter.

[31]  E. Wigner,et al.  Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie , 1930 .

[32]  Lee,et al.  Luminescence linewidths of excitons in GaAs quantum wells below 150 K. , 1986, Physical review. B, Condensed matter.

[33]  Ferdinand Scholz,et al.  Refractive index of (AlxGa1−x)0.5In0.5P grown by metalorganic vapor phase epitaxy , 1994 .

[34]  Fred H. Pollak,et al.  Piezo-Electroreflectance in Ge, GaAs, and Si , 1968 .

[35]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[36]  D. Miller,et al.  Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures , 1984 .

[37]  Femtosecond time division interferometry technique for measuring the tensor components of χ(3) , 1992 .

[38]  James G. Fujimoto,et al.  Femtosecond all‐optical switching in AlGaAs waveguides using a time division interferometer , 1989 .

[39]  Shawn-Yu Lin,et al.  Direct measurement of refractive-index dispersion using a time-delayed technique , 1998 .

[40]  Stanley,et al.  Measurement of cavity-polariton dispersion curve from angle resolved photoluminescence experiments. , 1994, Physical review letters.

[41]  Rick Trebino,et al.  Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating , 1996 .

[42]  Bassani,et al.  Dispersion relations and sum rules in nonlinear optics. , 1991, Physical review. B, Condensed matter.

[43]  Chemla,et al.  Fano resonances due to coupled magnetoexciton and continuum states in bulk semiconductors. , 1994, Physical review. B, Condensed matter.

[44]  He Excitons in anisotropic solids: The model of fractional-dimensional space. , 1991, Physical review. B, Condensed matter.

[45]  Manuel Joffre,et al.  Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy , 1995 .

[46]  Stanley,et al.  Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons. , 1995, Physical review. B, Condensed matter.

[47]  D. Chemla,et al.  DENSITY DEPENDENCE OF THE SPECTRAL DIELECTRIC FUNCTION ACROSS A FANO RESONANCE , 1998 .

[48]  David A. B. Miller,et al.  Linear and nonlinear optical properties of semiconductor quantum wells , 1989 .

[49]  Chemla,et al.  Quantum interference in the system of Lorentzian and Fano magnetoexciton resonances in GaAs. , 1995, Physical review. B, Condensed matter.

[50]  Schäfer,et al.  Ultrafast phase dynamics of coherent emission from excitons in GaAs quantum wells. , 1994, Physical review. B, Condensed matter.

[51]  D. Kane,et al.  Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating , 1993 .

[52]  Shigehisa Arai,et al.  Field‐induced refractive index variation spectrum in a GaInAs/InP quantum wire structure , 1991 .