Notions of Convexity in Carnot Groups

CONTENTS 1. Introduction 2. Preliminaries 3. Strongly convex functions: A notion to abandon 4. Mildly convex functions: The appearance of horizontal planes 5. Weakly convex functions: The horizontal Hessian 6. Weak convexity of the gauge in groups of Heisenberg type 7. Convexity of sets 8. Further properties of second derivatives of weakly convex functions 9. Basic properties of first derivatives of weakly convex functions: L

[1]  Seok-Jin Kang,et al.  Lie Algebras and Their Representations , 1996 .

[2]  F. S. Cassano,et al.  Surface measures in Carnot-Carathéodory spaces , 2001 .

[3]  E. Stein,et al.  Estimates for the complex and analysis on the heisenberg group , 1974 .

[4]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[5]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[6]  L. Capogna,et al.  Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations , 1996 .

[7]  Scott D. Pauls,et al.  The Bernstein Problem in the Heisenberg Group , 2002 .

[8]  D. Danielli,et al.  On the best possible character of the $L^Q$ norm in some a priori estimates for non-divergence form equations in Carnot groups , 2003 .

[9]  Michael Cowling,et al.  H-type groups and Iwasawa decompositions☆ , 1991 .

[10]  Juha Heinonen,et al.  Quasiregular maps on Carnot groups , 1997 .

[11]  C. Carathéodory Untersuchungen über die Grundlagen der Thermodynamik , 1909 .

[12]  Juan J. Manfredi,et al.  Convex functions on the Heisenberg group , 2003 .

[13]  P. Pansu,et al.  Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .

[14]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[15]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[16]  Aroldo Kaplan,et al.  Fundamental solutions for a class of hypoelliptic PDE , 1980 .

[17]  C. Pucci Limitazioni per soluzioni di equazioni ellittiche , 1966 .

[18]  Gerald B. Folland,et al.  A fundamental solution for a subelliptic operator , 1973 .

[19]  E. Heine,et al.  Untersuchungen über die Reihe . , 1847 .

[20]  A. V. Pogorelov Extrinsic geometry of convex surfaces , 1973 .

[21]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[22]  Ju G Rešetnjak Generalized Derivatives and Differentiability almost Everywhere , 1968 .

[23]  Cristian E. Gutiérrez,et al.  The Monge―Ampère Equation , 2001 .

[24]  Wei-Liang Chow Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .

[25]  Ilya J. Bakelman,et al.  Convex Analysis and Nonlinear Geometric Elliptic Equations , 1994 .

[26]  Jacek Cygan,et al.  Subadditivity of homogeneous norms on certain nilpotent Lie groups , 1981 .

[27]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[28]  On second derivates of convex functions. , 1977 .

[29]  N. Garofalo,et al.  Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type , 2001 .

[30]  Thomas Bieske,et al.  ON ∞-HARMONIC FUNCTIONS ON THE HEISENBERG GROUP , 2002 .

[31]  Nicola Garofalo,et al.  Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces , 1998 .

[32]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[33]  G. Folland,et al.  Subelliptic estimates and function spaces on nilpotent Lie groups , 1975 .

[34]  S. Salsa,et al.  Variational inequalities with lack of ellipticity. Part I: Optimal interior regularity and non-degeneracy of the free boundary , 2003 .

[35]  Nicola Garofalo,et al.  ISOPERIMETRIC AND SOBOLEV INEQUALITIES FOR CARNOT-CARATHEODORY SPACES AND THE EXISTENCE OF MINIMAL SURFACES , 1996 .

[36]  L. Evans Measure theory and fine properties of functions , 1992 .