Notions of Convexity in Carnot Groups
暂无分享,去创建一个
[1] Seok-Jin Kang,et al. Lie Algebras and Their Representations , 1996 .
[2] F. S. Cassano,et al. Surface measures in Carnot-Carathéodory spaces , 2001 .
[3] E. Stein,et al. Estimates for the complex and analysis on the heisenberg group , 1974 .
[4] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[5] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[6] L. Capogna,et al. Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations , 1996 .
[7] Scott D. Pauls,et al. The Bernstein Problem in the Heisenberg Group , 2002 .
[8] D. Danielli,et al. On the best possible character of the $L^Q$ norm in some a priori estimates for non-divergence form equations in Carnot groups , 2003 .
[9] Michael Cowling,et al. H-type groups and Iwasawa decompositions☆ , 1991 .
[10] Juha Heinonen,et al. Quasiregular maps on Carnot groups , 1997 .
[11] C. Carathéodory. Untersuchungen über die Grundlagen der Thermodynamik , 1909 .
[12] Juan J. Manfredi,et al. Convex functions on the Heisenberg group , 2003 .
[13] P. Pansu,et al. Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .
[14] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[15] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[16] Aroldo Kaplan,et al. Fundamental solutions for a class of hypoelliptic PDE , 1980 .
[17] C. Pucci. Limitazioni per soluzioni di equazioni ellittiche , 1966 .
[18] Gerald B. Folland,et al. A fundamental solution for a subelliptic operator , 1973 .
[19] E. Heine,et al. Untersuchungen über die Reihe . , 1847 .
[20] A. V. Pogorelov. Extrinsic geometry of convex surfaces , 1973 .
[21] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[22] Ju G Rešetnjak. Generalized Derivatives and Differentiability almost Everywhere , 1968 .
[23] Cristian E. Gutiérrez,et al. The Monge―Ampère Equation , 2001 .
[24] Wei-Liang Chow. Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .
[25] Ilya J. Bakelman,et al. Convex Analysis and Nonlinear Geometric Elliptic Equations , 1994 .
[26] Jacek Cygan,et al. Subadditivity of homogeneous norms on certain nilpotent Lie groups , 1981 .
[27] L. Caffarelli,et al. Fully Nonlinear Elliptic Equations , 1995 .
[28] On second derivates of convex functions. , 1977 .
[29] N. Garofalo,et al. Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type , 2001 .
[30] Thomas Bieske,et al. ON ∞-HARMONIC FUNCTIONS ON THE HEISENBERG GROUP , 2002 .
[31] Nicola Garofalo,et al. Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces , 1998 .
[32] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[33] G. Folland,et al. Subelliptic estimates and function spaces on nilpotent Lie groups , 1975 .
[34] S. Salsa,et al. Variational inequalities with lack of ellipticity. Part I: Optimal interior regularity and non-degeneracy of the free boundary , 2003 .
[35] Nicola Garofalo,et al. ISOPERIMETRIC AND SOBOLEV INEQUALITIES FOR CARNOT-CARATHEODORY SPACES AND THE EXISTENCE OF MINIMAL SURFACES , 1996 .
[36] L. Evans. Measure theory and fine properties of functions , 1992 .