Robust Distributed Source Coding

We consider a distributed source coding system in which several observations must be encoded separately and communicated to the decoder by using limited transmission rate. We introduce a robust distributed coding scheme which flexibly trades off between system robustness and compression efficiency. The optimality of this coding scheme is proved for various special cases.

[1]  Vivek K. Goyal,et al.  Multiple description coding with many channels , 2003, IEEE Trans. Inf. Theory.

[2]  David Tse,et al.  Multiaccess Fading Channels-Part I: Polymatroid Structure, Optimal Resource Allocation and Throughput Capacities , 1998, IEEE Trans. Inf. Theory.

[3]  Toby Berger,et al.  An upper bound on the sum-rate distortion function and its corresponding rate allocation schemes for the CEO problem , 2004, IEEE Journal on Selected Areas in Communications.

[4]  Abbas El Gamal,et al.  Achievable rates for multiple descriptions , 1982, IEEE Trans. Inf. Theory.

[5]  Fang-Wei Fu,et al.  On the rate-distortion region for multiple descriptions , 2002, IEEE Trans. Inf. Theory.

[6]  Vinod M. Prabhakaran,et al.  Rate region of the quadratic Gaussian CEO problem , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[7]  Te Sun Han,et al.  A unified achievable rate region for a general class of multiterminal source coding systems , 1980, IEEE Trans. Inf. Theory.

[8]  H. S. Witsenhausen,et al.  B.S.T.J. brief: On source networks with minimal breakdown degradation , 1980, The Bell System Technical Journal.

[9]  Yasutada Oohama Gaussian multiterminal source coding , 1997, IEEE Trans. Inf. Theory.

[10]  Robert M. Gray,et al.  Encoding of correlated observations , 1987, IEEE Trans. Inf. Theory.

[11]  Nelson M. Blachman,et al.  The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.

[12]  Toby Berger,et al.  Multiterminal source encoding with encoder breakdown , 1989, IEEE Trans. Inf. Theory.

[13]  Yasutada Oohama,et al.  The Rate-Distortion Function for the Quadratic Gaussian CEO Problem , 1998, IEEE Trans. Inf. Theory.

[14]  Masoud Salehi,et al.  Multiple access channels with arbitrarily correlated sources , 1980, IEEE Trans. Inf. Theory.

[15]  Toby Berger,et al.  New results in binary multiple descriptions , 1987, IEEE Trans. Inf. Theory.

[16]  A. Wyner,et al.  Source coding for multiple descriptions , 1980, The Bell System Technical Journal.

[17]  Toby Berger,et al.  Rate distortion when side information may be absent , 1985, IEEE Trans. Inf. Theory.

[18]  Toby Berger,et al.  Successive Wyner–Ziv Coding Scheme and Its Application to the Quadratic Gaussian CEO Problem , 2006, IEEE Transactions on Information Theory.

[19]  Zhen Zhang,et al.  On the CEO problem , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[20]  L. Ozarow,et al.  On a source-coding problem with two channels and three receivers , 1980, The Bell System Technical Journal.

[21]  Kannan Ramchandran,et al.  n-channel symmetric multiple descriptions - part I: (n, k) source-channel erasure codes , 2004, IEEE Transactions on Information Theory.

[22]  Toby Berger,et al.  Minimum breakdown degradation in binary source encoding , 1983, IEEE Trans. Inf. Theory.

[23]  Ram Zamir Gaussian codes and Shannon bounds for multiple descriptions , 1999, IEEE Trans. Inf. Theory.

[24]  Raymond W. Yeung,et al.  Symmetrical multilevel diversity coding , 1997, IEEE Trans. Inf. Theory.

[25]  James Richard Roche Distributed information storage , 1992 .

[26]  Raymond W. Yeung,et al.  Multilevel diversity coding with distortion , 1995, IEEE Trans. Inf. Theory.

[27]  Toby Berger,et al.  The CEO problem [multiterminal source coding] , 1996, IEEE Trans. Inf. Theory.

[28]  Rudolf Ahlswede,et al.  Source coding with side information and a converse for degraded broadcast channels , 1975, IEEE Trans. Inf. Theory.

[29]  H. Witsenhausen ON SEQUENCES OF PAIRS OF DEPENDENT RANDOM VARIABLES , 1975 .

[30]  R. Yeung,et al.  On the rate-distortion region for multiple descriptions , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[31]  Jun Chen,et al.  A semicontinuity theorem and its application to network source coding , 2008, 2008 IEEE International Symposium on Information Theory.

[32]  Toby Berger,et al.  Multiterminal source encoding with one distortion criterion , 1989, IEEE Trans. Inf. Theory.

[33]  T. Cover,et al.  Rate Distortion Theory , 2001 .

[34]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[35]  Stark C. Draper,et al.  Side information aware coding strategies for sensor networks , 2004, IEEE Journal on Selected Areas in Communications.

[36]  Michael Gastpar,et al.  The Wyner-Ziv problem with multiple sources , 2004, IEEE Transactions on Information Theory.

[37]  Rudolf Ahlswede,et al.  On multiple descriptions and team guessing , 1986, IEEE Trans. Inf. Theory.

[38]  H. Witsenhausen,et al.  Source coding for multiple descriptions II: A binary source , 1981, The Bell System Technical Journal.

[39]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[40]  Kannan Ramchandran,et al.  On rate-constrained distributed estimation in unreliable sensor networks , 2005, IEEE Journal on Selected Areas in Communications.

[41]  Zhen Zhang,et al.  Distributed Source Coding for Satellite Communications , 1999, IEEE Trans. Inf. Theory.

[42]  János Körner,et al.  How to encode the modulo-two sum of binary sources (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[43]  Chao Tian,et al.  Multiple Description Quantization Via Gram–Schmidt Orthogonalization , 2005, IEEE Transactions on Information Theory.

[44]  Yasutada Oohama,et al.  Rate-distortion theory for Gaussian multiterminal source coding systems with several side informations at the decoder , 2005, IEEE Transactions on Information Theory.

[45]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[46]  Rudolf Ahlswede,et al.  The rate-distortion region for multiple descriptions without excess rate , 1985, IEEE Trans. Inf. Theory.

[47]  K. Ramchandran,et al.  n-channel symmetric multiple descriptions: new rate regions , 2002, Proceedings IEEE International Symposium on Information Theory,.

[48]  Thomas M. Cover,et al.  A Proof of the Data Compression Theorem of Slepian and Wolf for Ergodic Sources , 1971 .

[49]  Pramod Viswanath Sum Rate of Multiterminal Gaussian Source Coding , 2003 .

[50]  Jack K. Wolf,et al.  Transmission of noisy information to a noisy receiver with minimum distortion , 1970, IEEE Trans. Inf. Theory.

[51]  Toby Berger,et al.  The quadratic Gaussian CEO problem , 1997, IEEE Trans. Inf. Theory.

[52]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[53]  Hans S. Witsenhausen,et al.  On Team Guessing with Independent Information , 1981, Math. Oper. Res..

[54]  Michelle Effros,et al.  On the achievable region for multiple description source codes on Gaussian sources , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[55]  Kannan Ramchandran,et al.  n-channel symmetric multiple descriptions-part II:An achievable rate-distortion region , 2005, IEEE Transactions on Information Theory.