A complex orthogonal decomposition for wave motion analysis

A method is presented for decomposing wave motion into its principle components. The basic idea is a complex generalization of proper orthogonal decomposition. The method involves the representation of real oscillatory signals as complex analytic signals. The relationship between complex modes and wave motion is explored. From an ensemble of complex signals, a complex correlation matrix is formed, and its complex eigensolution is the basis of the decomposition (like a complex singular value decomposition). The complex eigenvectors contain standing and traveling characteristics. A traveling index is proposed to quantify the relative degree of traveling and standing in a waveform. A method of dissecting a wave mode into its traveling and standing parts is also proposed. From the complex modes and modal coordinates, frequencies, wavelengths, and characteristic wave speeds can be obtained. The method is applied to traveling and standing-wave examples.

[1]  A. Vakakis,et al.  PROPER ORTHOGONAL DECOMPOSITION (POD) OF A CLASS OF VIBROIMPACT OSCILLATIONS , 2001 .

[2]  Wenliang Zhou,et al.  Smooth orthogonal decomposition-based vibration mode identification , 2006 .

[3]  M. Glauser,et al.  Multifractal Analysis of a Lobed Mixer Flowfield Utilizing the Proper Orthogonal Decomposition , 1992 .

[4]  Jocelyn Chanussot,et al.  Unsupervised separation of seismic waves using the watershed algorithm on time-scale images , 2004 .

[5]  Matthew A. Davies,et al.  SOLITONS, CHAOS AND MODAL INTERACTIONS IN PERIODIC STRUCTURES , 1997 .

[6]  V. A. Krasil’nikov,et al.  Atmospheric turbulence and radio-wave propagation , 1962 .

[7]  T. Caughey,et al.  Classical Normal Modes in Damped Linear Dynamic Systems , 1960 .

[8]  Pierre Argoul,et al.  INSTANTANEOUS INDICATORS OF STRUCTURAL BEHAVIOUR BASED ON THE CONTINUOUS CAUCHY WAVELET ANALYSIS , 2003 .

[9]  H. S. Lee,et al.  Wave profile measurement by wavelet transform , 2003 .

[10]  Mostafa Kaveh,et al.  Experimental Evaluation of High-Resolution Direction-Finding Algorithms Using a Calibrated Sensor Array Testbed , 1995 .

[11]  G. Kerschen,et al.  Parameter identification of nonlinear mechanical systems using Proper Orthogonal Decomposition , 2000 .

[12]  A. Vakakis,et al.  NON-LINEAR NORMAL MODES AND NON-PARAMETRIC SYSTEM IDENTIFICATION OF NON-LINEAR OSCILLATORS , 2000 .

[13]  R. L. Johnson An experimental investigation of three eigen DF techniques , 1992 .

[14]  Gaëtan Kerschen,et al.  On the exploitation of chaos to build reduced-order models , 2003 .

[15]  Peter W. Tse,et al.  Extraction of patch-induced Lamb waves using a wavelet transform , 2004 .

[16]  C. Lamarque,et al.  DAMPING IDENTIFICATION IN MULTI-DEGREE-OF-FREEDOM SYSTEMS VIA A WAVELET-LOGARITHMIC DECREMENT—PART 1: THEORY , 2000 .

[17]  R. J. Peppin An Introduction to Random Vibrations, Spectral and Wavelet Analysis , 1994 .

[18]  Keisuke Kamiya,et al.  Experimental Identification Technique of Nonlinear Beams in Time Domain , 1999 .

[19]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[20]  Alexander F. Vakakis,et al.  Interaction Between Slow and Fast Oscillations in an Infinite Degree-of-Freedom Linear System Coupled to a Nonlinear Subsystem: Theory and Experiment , 1999 .

[21]  T. Dudok de Wit,et al.  The biorthogonal decomposition as a tool for investigating fluctuations in plasmas , 1994 .

[22]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  L. Meirovitch Principles and techniques of vibrations , 1996 .

[24]  Francesco Lanza di Scalea,et al.  WAVELET TRANSFORM FOR CHARACTERIZING LONGITUDINAL AND LATERAL TRANSIENT VIBRATIONS OF RAILROAD TRACKS , 2004 .

[25]  Brian F. Feeny,et al.  Part 2: Proper Orthogonal Modal Modeling of a Frictionally Excited Beam , 2000 .

[26]  Bogdan I. Epureanu,et al.  Exploiting Chaotic Dynamics for Detecting Parametric Variations in Aeroelastic Systems , 2004 .

[27]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[28]  Alan G. Haddow,et al.  Wavelet transform analysis of transient wave propagation in a dispersive medium , 1994 .

[29]  J. Cusumano,et al.  Period-infinity periodic motions, chaos, and spatial coherence in a 10 degree of freedom impact oscillator , 1993 .

[30]  L. Rayleigh,et al.  The theory of sound , 1894 .

[31]  B. Feeny,et al.  Interpreting proper orthogonal modes of randomly excited vibration systems , 2003 .

[32]  Earl H. Dowell,et al.  REDUCED-ORDER MODELS OF UNSTEADY TRANSONIC VISCOUS FLOWS IN TURBOMACHINERY , 2000 .

[33]  Brian F. Feeny,et al.  An "optimal" modal reduction of a system with frictional excitation , 1999 .

[34]  C. Papadopoulos,et al.  Developing Pod Over the Complex Plane to Form a Data Processing Tool for Finite Element Simulations of Steady State Structural Dynamics , 2006 .

[35]  Bogdan I. Epureanu,et al.  A parametric analysis of reduced order models of viscous flows in turbomachinery , 2003 .

[36]  Jerry H. Ginsberg,et al.  Mechanical and Structural Vibrations: Theory and Applications , 2001 .

[37]  Alexander F. Vakakis,et al.  Karhunen-Loève decomposition of the transient dynamics of a multibay truss , 1999 .

[38]  Nadine Aubry,et al.  Spatiotemporal analysis of complex signals: Theory and applications , 1991 .

[39]  Ardéshir Guran Nonlinear dynamics : the Richard Rand 50th anniversary volume , 1997 .

[40]  Brian F. Feeny,et al.  On Proper Orthogonal Co-Ordinates as Indicators of Modal Activity , 2002 .

[41]  Daniel Coca,et al.  Continuous-Time System Identification for Linear and Nonlinear Systems Using Wavelet Decompositions , 1997 .

[42]  R. Mortensen Random Signals and Systems , 2019, Model-Based Processing.

[43]  G. Kerschen,et al.  PHYSICAL INTERPRETATION OF THE PROPER ORTHOGONAL MODES USING THE SINGULAR VALUE DECOMPOSITION , 2002 .

[44]  Umberto Iemma,et al.  Digital holography and Karhunen–Loève decomposition for the modal analysis of two-dimensional vibrating structures , 2006 .

[45]  Brian F. Feeny,et al.  On the Proper Orthogonal Modes and Normal Modes of Continuous Vibration Systems , 2002 .

[46]  H. P. Lee,et al.  PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY , 2002 .

[47]  M.-C. Huang,et al.  Wave parameters and functions in wavelet analysis , 2004 .

[48]  Gaëtan Kerschen,et al.  Sensor validation using principal component analysis , 2005 .

[49]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[50]  J. Lumley Stochastic tools in turbulence , 1970 .

[51]  B. Feeny,et al.  Enhanced Proper Orthogonal Decomposition for the Modal Analysis of Homogeneous Structures , 2002 .

[52]  B. Feeny A Method of Decomposing Wave Motions , 2006 .

[53]  Mark N. Glauser,et al.  Downstream evolution of proper orthogonal decomposition eigenfunctions in a lobed mixer , 1993 .

[54]  Petre Stoica,et al.  Finite sample and modelling error effects on ESPRIT and MUSIC direction estimators , 1994 .

[55]  B. Feeny,et al.  On the physical interpretation of proper orthogonal modes in vibrations , 1998 .

[56]  G. Kerschen,et al.  The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview , 2005 .