Existence and uniqueness results for a fractional evolution equation in Hilbert space

The existence and uniqueness of the solution of a fractional evolution equation with the Riemann-Liouville fractional derivative of order α ∈ (0, 1) is studied in Hilbert space, based on the theory of sums of accretive operators. The results are applied to some subdiffusion problems.

[1]  Tosio Kato,et al.  Remarks on Pseudo-resolvents and Infinitesimal Generators of Semi-groups , 1959 .

[2]  Ya E Ryabov Behavior of fractional diffusion at the origin. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  S. D. Eidelman,et al.  Cauchy problem for evolution equations of a fractional order , 2004 .

[4]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[5]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[6]  Emilia Bazhlekova,et al.  Fractional evolution equations in Banach spaces , 2001 .

[7]  J. Prüss Evolutionary Integral Equations And Applications , 1993 .

[8]  Yuri Luchko,et al.  Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation , 2011, 1111.2961.

[9]  Giovanni Dore,et al.  On the closedness of the sum of two closed operators , 1987 .

[10]  Mark M. Meerschaert,et al.  Inhomogeneous Fractional Diffusion Equations , 2005 .

[11]  R. Hilfer Fractional Diffusion Based on Riemann-Liouville Fractional Derivatives † , 2000 .

[12]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[13]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[14]  Anatoly N. Kochubei,et al.  Distributed order calculus and equations of ultraslow diffusion , 2008 .

[15]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[16]  Tosio Kato Perturbation theory for linear operators , 1966 .

[17]  I. Podlubny,et al.  Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives , 2005, math-ph/0512028.

[18]  On the sum of fractional derivates and m-accretive operators , 1994 .