Weakly supervised individual ganglion cell segmentation from adaptive optics OCT images for glaucomatous damage assessment.

[1]  J. Stone,et al.  The topography of primate retina: A study of the human, bushbaby, and new‐ and old‐world monkeys , 1981, The Journal of comparative neurology.

[2]  Jonathan Cook,et al.  Can Automated Imaging for Optic Disc and Retinal Nerve Fiber Layer Analysis Aid Glaucoma Detection? , 2016, Ophthalmology.

[3]  J Katz,et al.  A population-based evaluation of glaucoma screening: the Baltimore Eye Survey. , 1991, American journal of epidemiology.

[4]  Thomas Theelen,et al.  Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography. , 2018, Biomedical optics express.

[5]  M. C. Leske,et al.  Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. , 2002, Archives of ophthalmology.

[6]  Hao Chen,et al.  Towards multi-center glaucoma OCT image screening with semi-supervised joint structure and function multi-task learning , 2020, Medical Image Anal..

[7]  Milan Sonka,et al.  A machine‐learning graph‐based approach for 3D segmentation of Bruch’s membrane opening from glaucomatous SD‐OCT volumes , 2017, Medical Image Anal..

[8]  Nima Tajbakhsh,et al.  UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation , 2020, IEEE Transactions on Medical Imaging.

[9]  A Heijl,et al.  Test-retest variability in glaucomatous visual fields. , 1989, American journal of ophthalmology.

[10]  Christian S. Perone,et al.  Unsupervised domain adaptation for medical imaging segmentation with self-ensembling , 2018, NeuroImage.

[11]  Suria S. Mannil,et al.  Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis. , 2019, The Lancet. Digital health.

[12]  David Alonso-Caneiro,et al.  Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search. , 2018, Biomedical optics express.

[13]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[14]  Sina Farsiu,et al.  Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning , 2019, Proceedings of the National Academy of Sciences.

[15]  Geraint Rees,et al.  Clinically applicable deep learning for diagnosis and referral in retinal disease , 2018, Nature Medicine.

[16]  Sebastien Ourselin,et al.  Automatic Cone Photoreceptor Localisation in Healthy and Stargardt Afflicted Retinas Using Deep Learning , 2018, Scientific Reports.

[17]  Daniel X. Hammer,et al.  Trans-retinal cellular imaging with multimodal adaptive optics , 2018, Biomedical optics express.

[18]  Jennifer J. Hunter,et al.  Imaging individual neurons in the retinal ganglion cell layer of the living eye , 2017, Proceedings of the National Academy of Sciences.

[19]  Jean-Claude Mwanza,et al.  Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma , 2014, British Journal of Ophthalmology.

[20]  Christopher S. Langlo,et al.  Reliability and Repeatability of Cone Density Measurements in Patients with Congenital Achromatopsia. , 2016, Advances in experimental medicine and biology.

[21]  Delia Cabrera DeBuc,et al.  Deep Learning based Retinal OCT Segmentation , 2018, Comput. Biol. Medicine.

[22]  R. Blanks,et al.  Retinal pathology in Alzheimer's disease. I. Ganglion cell loss in foveal/parafoveal retina , 1996, Neurobiology of Aging.

[23]  Joseph A. Izatt,et al.  Automatic cone photoreceptor segmentation using graph theory and dynamic programming , 2013, Biomedical optics express.

[24]  Joel S Schuman,et al.  Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field. , 2017, American journal of ophthalmology.

[25]  Angela Yao,et al.  Content-Aware Multi-Level Guidance for Interactive Instance Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Sina Farsiu,et al.  RAC-CNN: multimodal deep learning based automatic detection and classification of rod and cone photoreceptors in adaptive optics scanning light ophthalmoscope images. , 2019, Biomedical optics express.

[27]  F. Medeiros,et al.  Detecting Structural Progression in Glaucoma with Optical Coherence Tomography. , 2017, Ophthalmology.

[28]  Robert N Weinreb,et al.  Visual function-specific perimetry to identify glaucomatous visual loss using three different definitions of visual field abnormality. , 2009, Investigative ophthalmology & visual science.

[29]  Robert N Weinreb,et al.  Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps. , 2019, Ophthalmology.

[30]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[31]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[32]  Donald T. Miller,et al.  Imaging and quantifying ganglion cells and other transparent neurons in the living human retina , 2017, Proceedings of the National Academy of Sciences.

[33]  Ismail Ben Ayed,et al.  On Regularized Losses for Weakly-supervised CNN Segmentation , 2018, ECCV.

[34]  Joseph A. Izatt,et al.  Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation , 2010, Optics express.

[35]  Furu Zhang,et al.  Quantification of Retinal Ganglion Cell Morphology in Human Glaucomatous Eyes , 2021, Investigative ophthalmology & visual science.

[36]  Gadi Wollstein,et al.  Clinical Utility of Optical Coherence Tomography in Glaucoma , 2016, Investigative ophthalmology & visual science.

[37]  Nassir Navab,et al.  ReLayNet: Retinal Layer and Fluid Segmentation of Macular Optical Coherence Tomography using Fully Convolutional Network , 2017, Biomedical optics express.

[38]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[39]  Daguang Xu,et al.  Generalizing Deep Learning for Medical Image Segmentation to Unseen Domains via Deep Stacked Transformation , 2020, IEEE Transactions on Medical Imaging.

[40]  Mitrofanis Pavlidis,et al.  MORPHOMETRIC EXAMINATION OF HUMAN AND MONKEY RETINAL GANGLION CELLS WITHIN THE PAPILLOMACULAR AREA , 2006, Retina.

[41]  Gadi Wollstein,et al.  Attention-Guided 3D-CNN Framework for Glaucoma Detection and Structural-Functional Association Using Volumetric Images , 2020, IEEE Journal of Biomedical and Health Informatics.

[42]  P. Khaw,et al.  Primary open-angle glaucoma , 2004, The Lancet.

[43]  Jian Sun,et al.  Guided Image Filtering , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Nathan Doble,et al.  Inner Retinal Changes in Primary Open-Angle Glaucoma Revealed Through Adaptive Optics-Optical Coherence Tomography , 2018, Journal of glaucoma.

[45]  A. G. Bennett,et al.  Improvements on Littmann's method of determining the size of retinal features by fundus photography , 1994, Graefe's Archive for Clinical and Experimental Ophthalmology.

[46]  Myeong Jin Ju,et al.  Automated identification of cone photoreceptors in adaptive optics optical coherence tomography images using transfer learning. , 2018, Biomedical optics express.

[47]  Chong Wang,et al.  Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. , 2017, Biomedical optics express.

[48]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the human retina , 1985, The Journal of comparative neurology.