Social-media data for urban sustainability

A voluminous and complex amount of information — ‘big data’ — from social media such as Twitter and Flickr is now ubiquitous and of increasing interest to researchers studying human behaviour in cities. Yet the value of social-media data (SMD) for urban-sustainability research is still poorly understood. Here, we discuss key opportunities and challenges for the use of SMD by sustainability scholars in the natural and social sciences as well as by practitioners making daily decisions about urban systems. Evidence suggests that the vast scale and near-real-time observation are unique advantages of SMD and that solutions to most SMD challenges already exist.In this Review, the authors discuss challenges and opportunities for the use of social-media data in sustainability research and practice at the city level, and identify useful directions for future research.

[1]  B. Ward,et al.  Urban Planet , 1971 .

[2]  Paul Perry,et al.  Certain Problems in Election Survey Methodology , 1979 .

[3]  Charles E. Hurst Social Inequality: Forms, Causes, and Consequences , 1992 .

[4]  Scott D. Campbell,et al.  Green Cities, Growing Cities, Just Cities? Urban Planning and the Contradictions of Sustainable , 1996 .

[5]  M. Bradley,et al.  Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings , 1999 .

[6]  Jon Hawkes,et al.  The fourth pillar of sustainability: culture’s essential role in public planning , 2001 .

[7]  Michael K. McCall,et al.  Seeking good governance in participatory-GIS: a review of processes and governance dimensions in applying GIS to participatory spatial planning , 2003 .

[8]  M. Floyd,et al.  Contributions of leisure studies and recreation and park management research to the active living agenda. , 2005, American journal of preventive medicine.

[9]  P. Hanlon,et al.  Getting strategic about the environment and health. , 2006, Public health.

[10]  C. Dunn Participatory GIS — a people's GIS? , 2007 .

[11]  Robert Blackburn,et al.  What is social inequality , 2008 .

[12]  Mor Naaman,et al.  Methods for extracting place semantics from Flickr tags , 2009, TWEB.

[13]  Alessandro Acquisti,et al.  Predicting Social Security numbers from public data , 2009, Proceedings of the National Academy of Sciences.

[14]  David A. Bader,et al.  Massive Social Network Analysis: Mining Twitter for Social Good , 2010, 2010 39th International Conference on Parallel Processing.

[15]  Ross Purves,et al.  Exploring place through user-generated content: Using Flickr tags to describe city cores , 2010, J. Spatial Inf. Sci..

[16]  Kyumin Lee,et al.  You are where you tweet: a content-based approach to geo-locating twitter users , 2010, CIKM.

[17]  Qi Gao,et al.  Analyzing Cross-System User Modeling on the Social Web , 2011, ICWE.

[18]  Michael F. Goodchild,et al.  The convergence of GIS and social media: challenges for GIScience , 2011, Int. J. Geogr. Inf. Sci..

[19]  Steven Schockaert,et al.  Vague regions in Geographic Information Retrieval , 2011, SIGSPACIAL.

[20]  Jacob Ratkiewicz,et al.  Detecting and Tracking Political Abuse in Social Media , 2011, ICWSM.

[21]  Mor Naaman,et al.  Geographic information from georeferenced social media data , 2011, SIGSPACIAL.

[22]  Norman M. Sadeh,et al.  The Livehoods Project: Utilizing Social Media to Understand the Dynamics of a City , 2012, ICWSM.

[23]  Julie-Anne Carroll,et al.  Using mobile social media and GIS in health and place research , 2012 .

[24]  Fabrizio Silvestri,et al.  How Random Walks Can Help Tourism , 2012, ECIR.

[25]  D. Boyd,et al.  CRITICAL QUESTIONS FOR BIG DATA , 2012 .

[26]  Alexander J. Smola,et al.  Discovering geographical topics in the twitter stream , 2012, WWW.

[27]  N. Crossman,et al.  Global estimates of the value of ecosystems and their services in monetary units , 2012 .

[28]  Jeffrey Nichols,et al.  Where Is This Tweet From? Inferring Home Locations of Twitter Users , 2012, ICWSM.

[29]  Geert-Jan Houben,et al.  Geo-Location Estimation of Flickr Images: Social Web Based Enrichment , 2012, ECIR.

[30]  R. Goodspeed The Limited Usefulness of Social Media and Digital Trace Data for Urban Social Research , 2013, Proceedings of the International AAAI Conference on Web and Social Media.

[31]  Panagiotis Takis Metaxas,et al.  The power of prediction with social media , 2013, Internet Res..

[32]  Christopher M. Danforth,et al.  The Geography of Happiness: Connecting Twitter Sentiment and Expression, Demographics, and Objective Characteristics of Place , 2013, PloS one.

[33]  Mona Seymour,et al.  Green Alley Programs: Planning for a sustainable urban infrastructure? , 2013 .

[34]  Matthew Zook,et al.  Beyond the geotag: situating ‘big data’ and leveraging the potential of the geoweb , 2013 .

[35]  Kathryn Zickuhr,et al.  Who’s Not Online and Why , 2013 .

[36]  T. Gillespie,et al.  Urban tree planting programs, function or fashion? Los Angeles and urban tree planting campaigns , 2013 .

[37]  Scott A. Hale,et al.  Featured Graphic. Mapping the Geoweb: A Geography of Twitter , 2013 .

[38]  M. Goodchild,et al.  Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr , 2013 .

[39]  A. Stefanidis,et al.  Harvesting ambient geospatial information from social media feeds , 2011, GeoJournal.

[40]  A. Guerry,et al.  Using social media to quantify nature-based tourism and recreation , 2013, Scientific Reports.

[41]  Max Mühlhäuser,et al.  A Multi-Indicator Approach for Geolocalization of Tweets , 2013, ICWSM.

[42]  E. Gómez‐Baggethun,et al.  Classifying and valuing ecosystem services for urban planning , 2013 .

[43]  Fabrício Benevenuto,et al.  Comparing and combining sentiment analysis methods , 2013, COSN '13.

[44]  Matthew W. Wilson,et al.  Beyond the geotag: situating ‘big data’ and leveraging the potential of the geoweb , 2013 .

[45]  Jiebo Luo,et al.  Sentribute: image sentiment analysis from a mid-level perspective , 2013, WISDOM '13.

[46]  J. Kent,et al.  Spatial patterns and demographic indicators of effective social media content during theHorsethief Canyon fire of 2012 , 2013 .

[47]  Rongrong Ji,et al.  Large-scale visual sentiment ontology and detectors using adjective noun pairs , 2013, ACM Multimedia.

[48]  Shaowen Wang,et al.  Mapping the global Twitter heartbeat: The geography of Twitter , 2013, First Monday.

[49]  R. Grieve,et al.  Social Media as a Tool for Data Collection: Examining Equivalence of Socially Value-Laden Constructs , 2014 .

[50]  M. Williams,et al.  Big and broad social data and the sociological imagination: A collaborative response , 2014, Big Data Soc..

[51]  The Unsustainable City , 2014 .

[52]  Satish V. Ukkusuri,et al.  Urban activity pattern classification using topic models from online geo-location data , 2014 .

[53]  Wenwen Li,et al.  Using geolocated Twitter data to monitor the prevalence of healthy and unhealthy food references across the US , 2014 .

[54]  Xiang Chen,et al.  Does food environment influence food choices? A geographical analysis through “tweets” , 2014 .

[55]  Lisa Schweitzer,et al.  Planning and Social Media: A Case Study of Public Transit and Stigma on Twitter , 2014 .

[56]  S. Young Behavioral insights on big data: using social media for predicting biomedical outcomes. , 2014, Trends in microbiology.

[57]  Carlo Ratti,et al.  Geo-located Twitter as proxy for global mobility patterns , 2013, Cartography and geographic information science.

[58]  Robin Lovelace,et al.  Geotagged tweets to inform a spatial interaction model: a case study of museums , 2014, ArXiv.

[59]  Lázaro M. Bacallao-Pino,et al.  Social media mobilisations: Articulating participatory processes or visibilizing dissent? , 2014 .

[60]  Dong Xu,et al.  Where your photo is taken: Geolocation prediction for social images , 2014, J. Assoc. Inf. Sci. Technol..

[61]  M. Levy,et al.  Earth System Challenges and A Multi-layered Approach for the Sustainable Development Goals , 2014 .

[62]  D. Ruths,et al.  Social media for large studies of behavior , 2014, Science.

[63]  Matthew Zook,et al.  Mapping the Data Shadows of Hurricane Sandy: Uncovering the Sociospatial Dimensions of ‘Big Data’ , 2014 .

[64]  Stephen Polasky,et al.  Recreational demand for clean water: evidence from geotagged photographs by visitors to lakes , 2014 .

[65]  Helen Nissenbaum,et al.  Big data's end run around procedural privacy protections , 2014, Commun. ACM.

[66]  Daniele Quercia,et al.  Mining Urban Deprivation from Foursquare: Implicit Crowdsourcing of City Land Use , 2014, IEEE Pervasive Computing.

[67]  P. Roebeling,et al.  Contrasting values of cultural ecosystem services in urban areas: the case of park Montjuïc in Barcelona. , 2015 .

[68]  M. Johnson,et al.  Circulating microRNAs in Sera Correlate with Soluble Biomarkers of Immune Activation but Do Not Predict Mortality in ART Treated Individuals with HIV-1 Infection: A Case Control Study , 2015, PloS one.

[69]  Kyoji Kawagoe,et al.  Tweet-mapping Method for Tourist Spots Based on Now-Tweets and Spot-photos , 2015, KES.

[70]  Baoxin Li,et al.  Sentiment Analysis for Social Media Images , 2015, 2015 IEEE International Conference on Data Mining Workshop (ICDMW).

[71]  Jiawei Han,et al.  Mining Trajectory Data and Geotagged Data in Social Media for Road Map Inference , 2015, Trans. GIS.

[72]  Antonio Lima,et al.  Personalized routing for multitudes in smart cities , 2015, EPJ Data Science.

[73]  Matthew Zook,et al.  Social Media and the City: Rethinking Urban Socio-Spatial Inequality Using User-Generated Geographic Information , 2015 .

[74]  Raz Schwartz,et al.  The spatial self: Location-based identity performance on social media , 2015, New Media Soc..

[75]  H. Kennedy,et al.  Balancing the potential and problems of digital methods through action research: methodological reflections , 2015 .

[76]  Lan Mu,et al.  GIS analysis of depression among Twitter users , 2015 .

[77]  J. Lee,et al.  Using Social Media for Emergency Response and Urban Sustainability: A Case Study of the 2012 Beijing Rainstorm , 2015 .

[78]  S. Diallo,et al.  You Are What You Tweet: Connecting the Geographic Variation in America’s Obesity Rate to Twitter Content , 2015, PloS one.

[79]  Carlo Ratti,et al.  Urban magnetism through the lens of geo-tagged photography , 2015, EPJ Data Science.

[80]  Christopher M. Danforth,et al.  Climate Change Sentiment on Twitter: An Unsolicited Public Opinion Poll , 2015, PloS one.

[81]  Xiang Li,et al.  Explore Spatiotemporal and Demographic Characteristics of Human Mobility via Twitter: A Case Study of Chicago , 2015, ArXiv.

[82]  Lan Mu,et al.  Effect of climate and seasonality on depressed mood among twitter users , 2015 .

[83]  Bin Ran,et al.  Origin-Destination Estimation for Non-Commuting Trips Using Location-Based Social Networking Data , 2015 .

[84]  L. Ungar,et al.  Data-Driven Content Analysis of Social Media , 2015 .

[85]  Min Zhou,et al.  Mapping the popularity of urban restaurants using social media data , 2015 .

[86]  Shaowen Wang,et al.  A scalable framework for spatiotemporal analysis of location-based social media data , 2014, Comput. Environ. Urban Syst..

[87]  ‘Hacking multitude’ and Big Data: Some insights from the Turkish ‘digital coup’ , 2015 .

[88]  M. Williams,et al.  Who Tweets? Deriving the Demographic Characteristics of Age, Occupation and Social Class from Twitter User Meta-Data , 2015, PloS one.

[89]  Alexander Dunkel,et al.  Visualizing the perceived environment using crowdsourced photo geodata , 2015 .

[90]  Baoxin Li,et al.  Unsupervised Sentiment Analysis for Social Media Images , 2015, IJCAI.

[91]  Matthew Zook,et al.  Social Media and the City: Rethinking Urban Socio-Spatial Inequality Using User-Generated Geographic Information , 2015 .

[92]  Themis Palpanas,et al.  Where has this tweet come from? Fast and fine-grained geolocalization of non-geotagged tweets , 2016, Social Network Analysis and Mining.

[93]  X. Bai,et al.  Scientists must have a say in the future of cities , 2016, Nature.

[94]  Paulina Guerrero,et al.  Revealing Cultural Ecosystem Services through Instagram Images : The Potential of Social Media Volunteered Geographic Information for Urban Green Infrastructure Planning and Governance , 2016 .

[95]  Tenley M. Conway,et al.  Tending their urban forest: Residents’ motivations for tree planting and removal , 2016 .

[96]  Qingyun Du,et al.  Spatial and Social Media Data Analytics of Housing Prices in Shenzhen, China , 2016, PloS one.

[97]  Salman Qureshi,et al.  Advancing Urban Ecology toward a Science of Cities , 2016 .

[98]  Ken R. Smith,et al.  Leveraging geotagged Twitter data to examine neighborhood happiness, diet, and physical activity. , 2016, Applied geography.

[99]  G. Hoogendoorn,et al.  Instagrammers, Urban Renewal and the Johannesburg Inner City , 2016 .

[100]  Gareth W. Peters,et al.  Participatory Sensing Data Tweets for Micro-Urban Real-Time Resiliency Monitoring and Risk Management , 2016, IEEE Access.

[101]  Martin Clarke,et al.  From Big Noise to Big Data: Toward the Verification of Large Data sets for Understanding Regional Retail Flows , 2016 .

[102]  J. S. Verkade,et al.  Probabilistic flood extent estimates from social media flood observations , 2016 .

[103]  Megan L Ranney,et al.  Tweet Now, See You In the ED Later? Examining the Association Between Alcohol-related Tweets and Emergency Care Visits. , 2016, Academic emergency medicine : official journal of the Society for Academic Emergency Medicine.

[104]  Michael Gamon,et al.  Online and Social Media Data As an Imperfect Continuous Panel Survey , 2016, PloS one.

[105]  Spencer A Wood,et al.  Measuring recreational visitation at U.S. National Parks with crowd-sourced photographs. , 2016, Journal of environmental management.

[106]  Steff C Lewis,et al.  Gabapentin for the Management of Chronic Pelvic Pain in Women (GaPP1): A Pilot Randomised Controlled Trial , 2016, PloS one.

[107]  J. C. Liu,et al.  Who speaks for climate change in China? Evidence from Weibo , 2017, Climatic Change.

[108]  T. Ricketts,et al.  Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media , 2016, PloS one.

[109]  Zhenlong Li,et al.  Big Data and cloud computing: innovation opportunities and challenges , 2017, Int. J. Digit. Earth.

[110]  Stephen Jarvis,et al.  Predicting floods with Flickr tags , 2017, PloS one.

[111]  Teodora Sandra Buda,et al.  RCMC: Recognizing Crowd-Mobility Patterns in Cities Based on Location Based Social Networks Data , 2017, ACM Trans. Intell. Syst. Technol..

[112]  Isabelle Durance,et al.  The challenge of valuing ecosystem services that have no material benefits , 2017 .

[113]  B. Perera,et al.  Green infrastructure practices for improvement of urban air quality , 2017 .

[114]  Pablo Martí,et al.  Using locative social media and urban cartographies to identify and locate successful urban plazas , 2017 .

[115]  H. Roberts Using Twitter data in urban green space research: A case study and critical evaluation , 2017 .

[116]  Gisele L. Pappa,et al.  Strategies for combining Twitter users geo-location methods , 2018, GeoInformatica.

[117]  Diana Reckien,et al.  Utilising volunteered geographic information to assess resident's flood evacuation shelters. Case study: Jakarta , 2017 .

[118]  Michael Jendryke,et al.  Putting people in the picture: Combining big location-based social media data and remote sensing imagery for enhanced contextual urban information in Shanghai , 2017, Comput. Environ. Urban Syst..

[119]  Mingshu Wang,et al.  From stay to play – A travel planning tool based on crowdsourcing user-generated contents , 2017 .

[120]  Nigel Waters,et al.  Using Social Media and Satellite Data for Damage Assessment in Urban Areas During Emergencies , 2017 .

[121]  Declan O'Sullivan,et al.  RCMC: Recognizing Crowd-Mobility Patterns in Cities Based on Location Based Social Networks Data , 2017, TIST.

[122]  Dirk Neumann,et al.  Social media analytics and value creation in urban smart tourism ecosystems , 2017, Inf. Manag..

[123]  M. Acuto Global science for city policy , 2018, Science.

[124]  Karen C. Seto,et al.  Locking in positive climate responses in cities , 2018, Nature Climate Change.

[125]  David Fisher,et al.  Geolocated social media as a rapid indicator of park visitation and equitable park access , 2018, Comput. Environ. Urban Syst..

[126]  Zoé A. Hamstead,et al.  Using social media to understand drivers of urban park visitation in the Twin Cities, MN , 2018, Landscape and Urban Planning.

[127]  Ciara,et al.  Seeds of the Future in the Present: Exploring Pathways for Navigating Towards “Good” Anthropocenes , 2018 .

[128]  K. Seto,et al.  Building a global urban science , 2018, Nature Sustainability.