Edge-Weighted Personalized PageRank: Breaking A Decade-Old Performance Barrier

Personalized PageRank is a standard tool for finding vertices in a graph that are most relevant to a query or user. To personalize PageRank, one adjusts node weights or edge weights that determine teleport probabilities and transition probabilities in a random surfer model. There are many fast methods to approximate PageRank when the node weights are personalized; however, personalization based on edge weights has been an open problem since the dawn of personalized PageRank over a decade ago. In this paper, we describe the first fast algorithm for computing PageRank on general graphs when the edge weights are personalized. Our method, which is based on model reduction, outperforms existing methods by nearly five orders of magnitude. This huge performance gain over previous work allows us --- for the very first time --- to solve learning-to-rank problems for edge weight personalization at interactive speeds, a goal that had not previously been achievable for this class of problems.

[1]  Jure Leskovec,et al.  Supervised random walks: predicting and recommending links in social networks , 2010, WSDM '11.

[2]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[3]  Soumen Chakrabarti,et al.  Learning to rank networked entities , 2006, KDD '06.

[4]  B. E. Eckbo,et al.  Appendix , 1826, Epilepsy Research.

[5]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[6]  Louiqa Raschid,et al.  Efficient Ranking on Entity Graphs with Personalized Relationships , 2014, IEEE Transactions on Knowledge and Data Engineering.

[7]  Sergei Vassilvitskii,et al.  Generalized distances between rankings , 2010, WWW '10.

[8]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[9]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[10]  David F. Gleich,et al.  PageRank beyond the Web , 2014, SIAM Rev..

[11]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[12]  H. V. D. Vorst,et al.  Model Order Reduction: Theory, Research Aspects and Applications , 2008 .

[13]  David F. Gleich,et al.  Using Polynomial Chaos to Compute the Influence of Multiple Random Surfers in the PageRank Model , 2007, WAW.

[14]  Pavel Berkhin,et al.  A Survey on PageRank Computing , 2005, Internet Math..

[15]  Conrad Sanderson,et al.  Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Computationally Intensive Experiments , 2010 .

[16]  Pavel Berkhin,et al.  Bookmark-Coloring Algorithm for Personalized PageRank Computing , 2006, Internet Math..

[17]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[18]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[19]  Yannis Sismanis,et al.  Scalable topic-specific influence analysis on microblogs , 2014, WSDM.

[20]  Jianyong Wang,et al.  Incorporating heterogeneous information for personalized tag recommendation in social tagging systems , 2012, KDD.

[21]  Carl D. Meyer,et al.  Deeper Inside PageRank , 2004, Internet Math..

[22]  Vagelis Hristidis,et al.  ObjectRank: Authority-Based Keyword Search in Databases , 2004, VLDB.

[23]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .

[24]  Bin Jiang,et al.  Ranking spaces for predicting human movement in an urban environment , 2006, Int. J. Geogr. Inf. Sci..

[25]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[26]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[27]  Wei-Ying Ma,et al.  Object-level ranking: bringing order to Web objects , 2005, WWW '05.

[28]  David Amsallem,et al.  An adaptive and efficient greedy procedure for the optimal training of parametric reduced‐order models , 2015 .

[29]  Louiqa Raschid,et al.  Flexible and efficient querying and ranking on hyperlinked data sources , 2009, EDBT '09.

[30]  Wenpu Xing,et al.  Weighted PageRank algorithm , 2004, Proceedings. Second Annual Conference on Communication Networks and Services Research, 2004..

[31]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[32]  Jie Tang,et al.  ArnetMiner: extraction and mining of academic social networks , 2008, KDD.

[33]  David F. Gleich,et al.  Random Alpha PageRank , 2009, Internet Math..

[34]  David F. Gleich,et al.  A Factorization of the Spectral Galerkin System for Parameterized Matrix Equations: Derivation and Applications , 2010, SIAM J. Sci. Comput..

[35]  Nicholas J. Higham,et al.  A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra , 2000, SIAM J. Matrix Anal. Appl..

[36]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[37]  Serkan Gugercin,et al.  Interpolatory Model Reduction of Large-Scale Dynamical Systems , 2010 .

[38]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[39]  David F. Gleich,et al.  Spectral Methods for Parameterized Matrix Equations , 2009, SIAM J. Matrix Anal. Appl..

[40]  Ashish Goel,et al.  Fast Incremental and Personalized PageRank , 2010, Proc. VLDB Endow..

[41]  Tie-Yan Liu,et al.  Semi-supervised ranking on very large graphs with rich metadata , 2011, KDD.

[42]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[43]  R. Pinnau Model Reduction via Proper Orthogonal Decomposition , 2008 .

[44]  Louiqa Raschid,et al.  Explaining and Reformulating Authority Flow Queries , 2008, 2008 IEEE 24th International Conference on Data Engineering.