Precise Registration of Gene Expression Boundaries by a Repressive Morphogen in Drosophila

BACKGROUND Morphogen gradients are thought to create concentration thresholds that differentially position the expression boundaries of multiple target genes. Despite intensive study, it is still unclear how the concentration profiles within gradients are spatially related to the critical patterning thresholds they generate. RESULTS Here we use a combination of quantitative measurements and ectopic-misexpression experiments to examine the transcriptional-repression activities of the Hunchback (Hb) protein gradient in Drosophila embryos. Our results define five expression boundaries that are set primarily by differences in Hb concentration and two boundaries that are set by combinatorial mechanisms involving Hb and at least one other repressor. CONCLUSIONS Hb functions as a repressive morphogen, but only within a specific range of concentrations ( approximately 40% to approximately 4.4% of maximum Hb concentration), within which there are at least four distinct concentration thresholds. The lower limit of the range reflects a position where the slope of the gradient becomes too shallow for resolution by specific target genes. Concentrations above the upper limit do not contribute directly to differential-repression mechanisms, but they provide a robust source that permits proper functioning of the gradient in heterozygous embryos that contain only one functional hb gene.

[1]  C. Nüsslein-Volhard,et al.  Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid , 1986, Nature.

[2]  Ruth Lehmann,et al.  The Drosophila posterior-group gene nanos functions by repressing hunchback activity , 1989, Nature.

[3]  Charless C. Fowlkes,et al.  Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution I: data acquisition pipeline , 2006, Genome Biology.

[4]  R. Lehmann,et al.  hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. , 1987, Developmental biology.

[5]  Michel Kerszberg,et al.  Specifying Positional Information in the Embryo: Looking Beyond Morphogens , 2007, Cell.

[6]  M. Levine,et al.  Computational Models for Neurogenic Gene Expression in the Drosophila Embryo , 2006, Current Biology.

[7]  D Kosman,et al.  Thoracic patterning by the Drosophila gap gene hunchback. , 2001, Developmental biology.

[8]  E Seifert,et al.  Differential regulation of the two transcripts from the Drosophila gap segmentation gene hunchback. , 1988, The EMBO journal.

[9]  K. Struhl,et al.  The gradient morphogen bicoid is a concentration-dependent transcriptional activator , 1989, Cell.

[10]  S. Salzberg,et al.  Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura , 2004, Genome Biology.

[11]  Anna G. Nazina,et al.  Homotypic regulatory clusters in Drosophila. , 2003, Genome research.

[12]  S. Small In vivo analysis of lacZ fusion genes in transgenic Drosophila melanogaster. , 2000, Methods in enzymology.

[13]  Diethard Tautz,et al.  Regulatory and coding regions of the segmentation gene hunchback are functionally conserved between Drosophila virilis and Drosophila melanogaster , 1994, Mechanisms of Development.

[14]  G. Struhl,et al.  Intrinsic activity of the lin-12 and Notch intracellular domains in vivo , 1993, Cell.

[15]  W. Bialek,et al.  Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient , 2007, Cell.

[16]  Peter A Lawrence,et al.  Morphogens, Compartments, and Pattern: Lessons from Drosophila? , 1996, Cell.

[17]  D. Tautz,et al.  Autonomous concentration-dependent activation and repression of Krüppel by hunchback in the Drosophila embryo. , 1994, Development.

[18]  M. Levine,et al.  Transcriptional regulation of a pair-rule stripe in Drosophila. , 1991, Genes & development.

[19]  S. Poole,et al.  Regulation of expression domains and effects of ectopic expression reveal gap gene-like properties of the linked pdm genes of Drosophila , 1993, Mechanisms of Development.

[20]  J. Fak,et al.  Transcriptional Control in the Segmentation Gene Network of Drosophila , 2004, PLoS biology.

[21]  Peter A. Lawrence,et al.  Control of Drosophila body pattern by the hunchback morphogen gradient , 1992, Cell.

[22]  M. Levine,et al.  Regulation of even‐skipped stripe 2 in the Drosophila embryo. , 1992, The EMBO journal.

[23]  Dmitri Papatsenko,et al.  A self-organizing system of repressor gradients establishes segmental complexity in Drosophila , 2003, Nature.

[24]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[25]  J. Reinitz,et al.  Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins , 1998, Development Genes and Evolution.

[26]  Danyang Yu,et al.  Groucho-dependent repression by sloppy-paired 1 differentially positions anterior pair-rule stripes in the Drosophila embryo. , 2004, Developmental biology.

[27]  S. Small,et al.  Two distinct mechanisms for differential positioning of gene expression borders involving the Drosophila gap protein giant. , 1998, Development.

[28]  S. Small,et al.  Anterior repression of a Drosophila stripe enhancer requires three position-specific mechanisms. , 2002, Development.

[29]  M Hoch,et al.  cis‐acting control elements for Krüppel expression in the Drosophila embryo. , 1990, The EMBO journal.

[30]  M. Bienz,et al.  Sharp anterior boundary of homeotic gene expression conferred by the fushi tarazu protein. , 1992, The EMBO journal.

[31]  V. Pirrotta,et al.  Interactions of the Drosophila gap gene giant with maternal and zygotic pattern-forming genes. , 1991, Development.

[32]  David H. Sharp,et al.  Dynamic control of positional information in the early Drosophila embryo , 2004, Nature.

[33]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[34]  M. Levine,et al.  Regulation of two pair-rule stripes by a single enhancer in the Drosophila embryo. , 1996, Developmental biology.

[35]  S. Small,et al.  Permissive and Instructive Anterior Patterning Rely on mRNA Localization in the Wasp Embryo , 2007, Science.

[36]  S. Carroll,et al.  Positioning adjacent pair-rule stripes in the posterior Drosophila embryo. , 1994, Development.

[37]  Diethard Tautz,et al.  Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene , 1989, Nature.

[38]  Claude Desplan,et al.  Synergy between the hunchback and bicoid morphogens is required for anterior patterning in Drosophila , 1994, Cell.

[39]  Michael J. Pankratz,et al.  Gradients of Krüppel and knirps gene products direct pair-rule gene stripe patterning in the posterior region of the drosophila embryo , 1990, Cell.

[40]  J. Posakony,et al.  Posterior stripe expression of hunchback is driven from two promoters by a common enhancer element. , 1995, Development.

[41]  G. Rubin,et al.  Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  H. Jäckle,et al.  Gene expression mediated by cis‐acting sequences of the Krüppel gene in response to the Drosophila morphogens bicoid and hunchback. , 1991, The EMBO journal.

[43]  Diethard Tautz,et al.  Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres , 1988, Nature.

[44]  Norbert Perrimon,et al.  Activation of posterior gap gene expression in the Drosophila blastoderm , 1995, Nature.

[45]  M. Levine,et al.  Mutually repressive interactions between the gap genes giant and Krüppel define middle body regions of the Drosophila embryo. , 1991, Development.

[46]  C. Nüsslein-Volhard,et al.  A gradient of bicoid protein in Drosophila embryos , 1988, Cell.

[47]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[48]  R. Lehmann,et al.  A gap gene, hunchback, regulates the spatial expression of Ultrabithorax , 1986, Cell.

[49]  V. Pirrotta,et al.  The giant gene of Drosophila encodes a b-ZIP DNA-binding protein that regulates the expression of other segmentation gap genes. , 1992, Development.

[50]  Diethard Tautz,et al.  Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes , 1987, Nature.

[51]  M. Levine,et al.  Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. , 1991, Science.

[52]  William McGinnis,et al.  Multiplex Detection of RNA Expression in Drosophila Embryos , 2004, Science.

[53]  M. Fujioka,et al.  Analysis of an even-skipped rescue transgene reveals both composite and discrete neuronal and early blastoderm enhancers, and multi-stripe positioning by gap gene repressor gradients. , 1999, Development.

[54]  Dmitri Papatsenko,et al.  The role of binding site cluster strength in Bicoid-dependent patterning in Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Wolfgang Driever,et al.  The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo , 1989, Nature.

[56]  G. Struhl,et al.  Differing strategies for organizing anterior and posterior body pattern in Drosophila embryos , 1989, Nature.

[57]  Diethard Tautz,et al.  A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo , 1990, Nature.