In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer

[1]  A. Regev,et al.  CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours , 2022, Nature.

[2]  Nancy R. Zhang,et al.  The interferon-stimulated gene RIPK1 regulates cancer cell intrinsic and extrinsic resistance to immune checkpoint blockade. , 2022, Immunity.

[3]  Paul J. Hoover,et al.  Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions , 2021, Cell Reports Medicine.

[4]  A. Regev,et al.  Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion , 2021, Nature Genetics.

[5]  John G Doench,et al.  In vivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma. , 2021, Immunity.

[6]  Clifford A. Meyer,et al.  In Vivo CRISPR Screens Identify E3 Ligase Cop1 as a Modulator of Macrophage Infiltration and Cancer Immunotherapy Target , 2020, bioRxiv.

[7]  Peter C. DeWeirdt,et al.  Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection , 2020, Cell.

[8]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[9]  K. Shah,et al.  Direct Tumor Killing and Immunotherapy through Anti-SerpinB9 Therapy , 2020, Cell.

[10]  Gary D Bader,et al.  Functional genomic landscape of cancer-intrinsic evasion of killing by T cells , 2020, Nature.

[11]  Katie M. Campbell,et al.  Conserved Interferon-γ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. , 2020, Cancer cell.

[12]  Ashton C. Berger,et al.  Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma , 2020, Nature Medicine.

[13]  Brian Craft,et al.  Visualizing and interpreting cancer genomics data via the Xena platform , 2020, Nature Biotechnology.

[14]  Xiaozhong Wang,et al.  Tumor heterogeneity and clonal cooperation influence the immune selection of IFN-γ-signaling mutant cancer cells , 2020, Nature Communications.

[15]  O. Kepp,et al.  Surface-exposed and soluble calreticulin: conflicting biomarkers for cancer prognosis , 2020, Oncoimmunology.

[16]  A. Regev,et al.  Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma , 2019, Nature Medicine.

[17]  R. Johnstone,et al.  Natural Killer Cells Suppress T Cell-Associated Tumor Immune Evasion. , 2019, Cell reports.

[18]  R. Muschel,et al.  Type I IFN protects cancer cells from CD8+ T cell–mediated cytotoxicity after radiation , 2019, The Journal of clinical investigation.

[19]  D. Schadendorf,et al.  Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade , 2019, Cell Research.

[20]  Nancy R. Zhang,et al.  Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade , 2019, Cell.

[21]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[22]  Allon M Klein,et al.  Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. , 2019, Cell systems.

[23]  D. M. Simons,et al.  Clonal Deletion of Tumor‐Specific T Cells by Interferon‐&ggr; Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade , 2019, Immunity.

[24]  J. Madore,et al.  Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. , 2019, Cancer cell.

[25]  Maja Pantic,et al.  TensorLy: Tensor Learning in Python , 2016, J. Mach. Learn. Res..

[26]  John G Doench,et al.  Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade , 2018, Nature.

[27]  M. Welters,et al.  NKG2A Blockade Potentiates CD8 T Cell Immunity Induced by Cancer Vaccines , 2018, Cell.

[28]  O. Lantz,et al.  Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells , 2018, Cell.

[29]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[30]  J. Lunceford,et al.  Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy , 2018, Science.

[31]  G. Freeman,et al.  Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response , 2018, Nature Medicine.

[32]  K. Brown,et al.  Tumor immune evasion arises through loss of TNF sensitivity , 2018, Science Immunology.

[33]  Henry W. Long,et al.  A major chromatin regulator determines resistance of tumor cells to T cell–mediated killing , 2018, Science.

[34]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[35]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[36]  T. Chan,et al.  Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab , 2017, Cell.

[37]  R. Tampé,et al.  Structure of the human MHC-I peptide-loading complex , 2017, Nature.

[38]  Feng Zhang,et al.  Identification of essential genes for cancer immunotherapy , 2017, Nature.

[39]  John G. Doench,et al.  In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target , 2017, Nature.

[40]  T. Graeber,et al.  Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. , 2017, Cancer discovery.

[41]  J. Lunceford,et al.  IFN- γ –related mRNA profile predicts clinical response to PD-1 blockade , 2017 .

[42]  H. Ishwaran,et al.  Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade , 2016, Cell.

[43]  Y. Shentu,et al.  Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. , 2016, The New England journal of medicine.

[44]  J. Wargo,et al.  Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy , 2016, Cell.

[45]  T. Graeber,et al.  Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. , 2016, The New England journal of medicine.

[46]  M. Shipp,et al.  NLRC5/MHC class I transactivator is a target for immune evasion in cancer , 2016, Proceedings of the National Academy of Sciences.

[47]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[48]  J. McQuade,et al.  Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. , 2016, Cancer discovery.

[49]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[50]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. , 2015, F1000Research.

[51]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[52]  A. Ravaud,et al.  Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. , 2015, The New England journal of medicine.

[53]  Mikhail Shugay,et al.  MiXCR: software for comprehensive adaptive immunity profiling , 2015, Nature Methods.

[54]  D. Schadendorf,et al.  Nivolumab in previously untreated melanoma without BRAF mutation. , 2015, The New England journal of medicine.

[55]  N. Hacohen,et al.  Molecular and Genetic Properties of Tumors Associated with Local Immune Cytolytic Activity , 2015, Cell.

[56]  J. Mesirov,et al.  The Molecular Signatures Database (MSigDB) hallmark gene set collection. , 2015, Cell systems.

[57]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[58]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[59]  Grazyna Kochan,et al.  Role of non-classical MHC class I molecules in cancer immunosuppression , 2013, Oncoimmunology.

[60]  Jens-Peter Volkmer,et al.  The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors , 2012, Proceedings of the National Academy of Sciences.

[61]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[62]  Ben S. Wittner,et al.  Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 , 2009, Nature.

[63]  Eric O Long Negative signaling by inhibitory receptors: the NK cell paradigm , 2008, Immunological reviews.

[64]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[65]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[66]  K. Hornik,et al.  Unbiased Recursive Partitioning: A Conditional Inference Framework , 2006 .

[67]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  F. Jotereau,et al.  Expression of CD94/NKG2-A on Human T Lymphocytes Is Induced by IL-12: Implications for Adoptive Immunotherapy1 , 2002, The Journal of Immunology.

[69]  R. Schreiber,et al.  IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity , 2001, Nature.

[70]  R. Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[71]  D. Templeton,et al.  Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis. , 1999, Journal of immunology.

[72]  J. G. van den Tweel,et al.  HLA class I expression and chromosomal deletions at 6p and 15q in head and neck squamous cell carcinomas. , 1999, Tissue antigens.

[73]  R. Schreiber,et al.  CD4+ T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-γ , 1999 .

[74]  A. Bai,et al.  The pathway for processing leader-derived peptides that regulate the maturation and expression of Qa-1b. , 1998, Immunity.

[75]  R. Schreiber,et al.  Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice , 1998 .

[76]  M. Llano,et al.  HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[77]  J. Bell,et al.  HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C , 1998, Nature.

[78]  K. Gustafson,et al.  Interferon-γ Induction of the Human Leukocyte Antigen-E Gene Is Mediated through Binding of a Complex Containing STAT1α to a Distinct Interferon-γ-responsive Element* , 1996, The Journal of Biological Chemistry.

[79]  K. Rajewsky,et al.  MHC class I expression in mice lacking the proteasome subunit LMP-7. , 1994, Science.