Fiber Optic Gas Sensors Based on Lossy Mode Resonances and Sensing Materials Used Therefor: A Comprehensive Review

Pollution in cities induces harmful effects on human health, which continuously increases the global demand of gas sensors for air quality control and monitoring. In the same manner, the industrial sector requests new gas sensors for their productive processes. Moreover, the association between exhaled gases and a wide range of diseases or health conditions opens the door for new diagnostic applications. The large number of applications for gas sensors has permitted the development of multiple sensing technologies. Among them, optical fiber gas sensors enable their utilization in remote locations, confined spaces or hostile environments as well as corrosive or explosive atmospheres. Particularly, Lossy Mode Resonance (LMR)-based optical fiber sensors employ the traditional metal oxides used for gas sensing purposes for the generation of the resonances. Some research has been conducted on the development of LMR-based optical fiber gas sensors; however, they have not been fully exploited yet and offer optimal possibilities for improvement. This review gives the reader a complete overview of the works focused on the utilization of LMR-based optical fiber sensors for gas sensing applications, summarizing the materials used for the development of these sensors as well as the fabrication procedures and the performance of these devices.

[1]  M. Hernáez,et al.  Lossy Mode Resonance Generation by Graphene Oxide Coatings Onto Cladding-Removed Multimode Optical Fiber , 2019, IEEE Sensors Journal.

[2]  Improving the width of lossy mode resonances in a reflection configuration D-shaped fiber by nanocoating laser ablation. , 2020, Optics letters.

[3]  I. Del Villar,et al.  Lossy mode resonance sensors based on lateral light incidence in nanocoated planar waveguides , 2019, Scientific Reports.

[4]  Shiquan Tao,et al.  Optical fiber humidity sensor based on evanescent-wave scattering. , 2004, Optics letters.

[5]  Chi-En Lu,et al.  Humidity Sensors: A Review of Materials and Mechanisms , 2005 .

[6]  Y. Kumar,et al.  Recent Advances in Materials, Parameters, Performance and Technology in Ammonia Sensors: A Review , 2019, Journal of Inorganic and Organometallic Polymers and Materials.

[7]  V. P. N. Nampoori,et al.  NO2 detection with a fiber optic evanescent wave sensor , 1999, International Symposium on Photonics and Applications.

[8]  I. Del Villar,et al.  Generation of lossy mode resonances in a broadband range with multilayer coated coverslips optimized for humidity sensing , 2020 .

[9]  Tadafumi Adschiri,et al.  Hydrothermal technology for nanotechnology , 2007 .

[10]  R. Tatam,et al.  Optical gas sensing: a review , 2012 .

[11]  Z. C. Alex,et al.  ZnO nanorods based fiber optic hexane sensor , 2019, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS: ICAM 2019.

[12]  Francisco J. Arregui,et al.  Optical fiber refractometers based on Lossy Mode Resonances by means of SnO2 sputtered coatings , 2014 .

[13]  Lossy mode resonance-based optical fiber humidity sensor , 2011, 2011 IEEE SENSORS Proceedings.

[14]  M. Ghobakhloo Industry 4.0, digitization, and opportunities for sustainability , 2020 .

[15]  Carlos Fernández-Valdivielso,et al.  Design rules for lossy mode resonance based sensors. , 2012, Applied optics.

[16]  M. Sangeetha,et al.  Ultra sensitive molybdenum disulfide (MoS2)/graphene based hybrid sensor for the detection of NO2 and formaldehyde gases by fiber optic clad modified method , 2020 .

[17]  D. Sastikumar,et al.  On the enhancement of ethanol sensing by CuO modified SnO2 nanoparticles using fiber-optic sensor , 2012 .

[18]  Z. C. Alex,et al.  Fiber-Optic Ammonia Sensor Based on Amine Functionalized ZnO Nanoflakes , 2018, IEEE Sensors Journal.

[19]  D. Sastikumar,et al.  Sensing characteristics of clad-modified with nanocrystalline metal oxide fiber optic gas sensor , 2014, Photonics Asia.

[20]  R. Cavicchi Calorimetric Sensors , 2012 .

[21]  Francisco J. Arregui,et al.  Optical fiber sensors based on gold nanorods embedded in polymeric thin films , 2018 .

[22]  D. Sastikumar,et al.  Nanocrystalline Titanium dioxide coated optical fiber sensor for ammonia vapour detection , 2010, NanoScience + Engineering.

[23]  Considerations for Lossy-Mode Resonance-Based Optical Fiber Sensor , 2013, IEEE Sensors Journal.

[24]  F. Arregui,et al.  Tunable optical fiber pH sensors based on TE and TM Lossy Mode Resonances (LMRs) , 2016 .

[25]  Trieu-Vuong Dinh,et al.  A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction , 2016 .

[26]  Hirofumi Okuda,et al.  Methanol selective fibre-optic gas sensor with a nanoporous thin film of organic-inorganic hybrid multilayers , 2015, Asia Pacific Optical Sensors Conference.

[27]  Vittorio M. N. Passaro,et al.  Fibre Bragg Grating Based Strain Sensors: Review of Technology and Applications , 2018, Sensors.

[28]  M. Hernáez,et al.  High-performance optical fiber humidity sensor based on lossy mode resonance using a nanostructured polyethylenimine and graphene oxide coating , 2019, Sensors and Actuators B: Chemical.

[29]  Daqiang Zhang,et al.  A Survey on Gas Sensing Technology , 2012, Sensors.

[30]  M. Hernáez,et al.  Optical Fiber Humidity Sensor Based on Lossy Mode Resonances Supported by TiO2/PSS Coatings , 2011 .

[31]  Tingting Liu,et al.  Acoustic absorption spectral peak location for gas detection , 2014 .

[32]  F. Arregui,et al.  Tunable electro-optic wavelength filter based on lossy-guided mode resonances. , 2013, Optics express.

[33]  Farshad Yaghouti Niyat,et al.  THE REVIEW OF SEMICONDUCTOR GAS SENSOR FOR NO X DETCTING , 2016 .

[34]  P. M. Anbarasan,et al.  Development of high-performance fiber optic gas sensor based rice-like CeO2/MWCNT nanocomposite synthesized by facile hydrothermal route , 2020 .

[35]  Zachariah C. Alex,et al.  ZnO nanoparticles based fiber optic gas sensor , 2016 .

[36]  D. Sastikumar,et al.  Spectroscopic and fiber optic ethanol sensing properties Gd doped ZnO nanoparticles. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[37]  Nikolay N. Nedyalkov,et al.  Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber , 2010 .

[38]  S. Harun,et al.  Single-mode Fiber Coated with Zinc Oxide (ZnO) Nanorods for H2 Gas Sensor Applications , 2019, 2019 IEEE International Conference on Sensors and Nanotechnology.

[39]  Seung-Woo Lee,et al.  Tapered Optical Fibre Sensors: Current Trends and Future Perspectives , 2019, Sensors.

[40]  M. Pradhan D-Type Optical Fiber & its Applications , 2014 .

[41]  Carlos Fernández-Valdivielso,et al.  Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra‐red region , 2010 .

[42]  M. Hernáez,et al.  Lossy mode resonances toward the fabrication of optical fiber humidity sensors , 2012 .

[43]  B. Renganathan,et al.  Nanocrystalline ZnO coated fiber optic sensor for ammonia gas detection , 2011 .

[44]  P. Willmott,et al.  Deposition of complex multielemental thin films , 2004 .

[45]  Liyun Ding,et al.  Nitric oxide optical fiber sensor based on exposed core fibers and CdTe/CdS quantum dots , 2018, Sensors and Actuators B: Chemical.

[46]  Francisco J. Arregui,et al.  Volatile organic compounds optical fiber sensor based on lossy mode resonances , 2012 .

[47]  A. Elkamel,et al.  A review of standards and guidelines set by international bodies for the parameters of indoor air quality , 2015 .

[48]  G. Gobi,et al.  Single-walled carbon nanotubes wrapped poly-methyl methacrylate fiber optic sensor for ammonia, ethanol and methanol vapors at room temperature , 2012 .

[49]  I. Del Villar,et al.  Lossy mode resonance optical sensors based on indium-gallium-zinc oxide thin film , 2019, Sensors and Actuators A: Physical.

[50]  Pablo Zubiate,et al.  Is there a frontier in sensitivity with Lossy mode resonance (LMR) based refractometers? , 2017, Scientific Reports.

[51]  A. Ganesan,et al.  Gamma radiation impact on the fiber optic acetone gas sensing behaviour of magnesium tetraborate , 2019, Optical Fiber Technology.

[52]  Francisco J. Arregui,et al.  High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances , 2016 .

[53]  D. Sastikumar,et al.  Nanocrystalline samarium oxide coated fiber optic gas sensor , 2014 .

[54]  Sunil K. Khijwania,et al.  An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity , 2005 .

[55]  David J. Miller,et al.  Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants , 2015 .

[56]  Francisco J. Arregui,et al.  Aluminum doped zinc oxide (AZO) coated optical fiber LMR refractometers—An experimental demonstration , 2019, Sensors and Actuators B: Chemical.

[57]  B. Renganathan,et al.  Fiber optic gas sensor with nanocrystalline ZnO , 2014 .

[58]  F. Arregui,et al.  Lossy mode resonance optical fiber sensor to detect organic vapors , 2013 .

[59]  A. Stephen,et al.  Acetone sensing behaviour of optical fiber clad-modified with γ-CuBr nanocrystals , 2018, Materials Science in Semiconductor Processing.

[60]  F Haghighi,et al.  Through the years with on-a-chip gas chromatography: a review. , 2015, Lab on a chip.

[61]  Shiquan Tao,et al.  Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples. , 2009, Talanta.

[62]  Jacek Gębicki,et al.  Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air , 2017 .

[63]  D. Newport,et al.  A review of optical interferometry techniques for VOC detection , 2020, Sensors and Actuators A: Physical.

[64]  Francisco J. Arregui,et al.  Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles , 2012 .

[65]  Francisco J. Arregui,et al.  Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers , 2010 .

[66]  Banshi D. Gupta,et al.  A lossy mode resonance-based fiber optic hydrogen gas sensor for room temperature using coatings of ITO thin film and nanoparticles , 2016 .

[67]  Nobuhiko Tsuji,et al.  Sensing characteristics of an optical fiber sensor for hydrogen leak , 2003 .

[68]  Chung-Fu Chang,et al.  On an Ammonia Gas Sensor Based on a Pt/AlGaN Heterostructure Field-Effect Transistor , 2012, IEEE Electron Device Letters.

[69]  Ulrich Banach,et al.  Hydrogen Sensors - A review , 2011 .

[70]  Shiquan Tao,et al.  High dynamic range fiber optic relative humidity sensor , 2002 .

[71]  S. Vijayakumar,et al.  Fiber optic ethanol gas sensor based WO3 and WO3/gC3N4 nanocomposites by a novel microwave technique , 2019, Optics & Laser Technology.

[72]  Guodong Li,et al.  SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties , 2014 .

[73]  S. James,et al.  [INVITED] Porphyrin-nanoassembled fiber-optic gas sensor fabrication: Optimization of parameters for sensitive ammonia gas detection , 2018 .

[74]  Min Zhang,et al.  Fabrication of three-dimensional zinc oxide nanoflowers for high-sensitivity fiber-optic ammonia gas sensors. , 2018, Applied optics.

[75]  M. Farag,et al.  Emerging analytical tools for the detection of the third gasotransmitter H2S, a comprehensive review , 2020, Journal of advanced research.

[76]  Yu Lei,et al.  Ammonia gas sensors: A comprehensive review. , 2019, Talanta.

[77]  J. Goicoechea,et al.  Generation of lossy mode resonances with different nanocoatings deposited on coverslips. , 2020, Optics express.

[78]  Francisco J. Arregui,et al.  Tunable humidity sensor based on ITO-coated optical fiber , 2010 .

[79]  Banshi D. Gupta,et al.  Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance , 2015 .

[80]  Ignacio Del Villar,et al.  Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study. , 2010, Optics express.

[81]  Jianchun Yang,et al.  Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition , 2015 .

[82]  Dnyandeo Pawar,et al.  A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions , 2019, Microchimica Acta.

[83]  D. Sastikumar,et al.  Development of room temperature fiber optic gas sensor using clad modified Zn3 (VO4)2 , 2018, Journal of Alloys and Compounds.

[84]  F. Poncin‐Epaillard,et al.  A new evanescent wave ammonia sensor based on polyaniline composite. , 2008, Talanta.

[85]  M. Sheikhi,et al.  A low cost and reliable fiber optic ethanol sensor based on nano-sized SnO2 , 2015 .

[86]  B. Renganathan,et al.  Fiber optic gas sensors with vanadium oxide and tungsten oxide nanoparticle coated claddings , 2014 .

[87]  Ralph P. Tatam,et al.  An ammonia sensor based on Lossy Mode Resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide , 2017 .

[88]  G. Gobi,et al.  Optical Fiber Coated with Nanocrystalline Tin Oxide for Ammonia Vapour Sensing , 2010 .

[89]  B. Renganathan,et al.  Gas sensing property of lithium tetraborate clad modified fiber optic sensor , 2013 .

[90]  D. Sastikumar,et al.  Gas sensing based on detection of light radiation from a region of modified cladding (nanocrystalline ZnO) of an optical fiber , 2017 .

[91]  Vincenzo Spagnolo,et al.  Optical and Electronic NOx Sensors for Applications in Mechatronics , 2009, Sensors.

[92]  Nerea De Acha,et al.  Optical sensors based on lossy-mode resonances , 2017 .

[93]  Yong Zhao,et al.  Review of no-core optical fiber sensor and applications , 2020 .

[94]  D. Caputo,et al.  Lossy Mode Resonance Sensors based on Tungsten Oxide Thin Films , 2020, 2020 IEEE Sensors.

[95]  Izabela Constantinoiu,et al.  Surface Acoustic Wave Sensors for Ammonia Detection at Room Temperature Based on SnO2/Co3O4 Bilayers , 2019, J. Sensors.

[96]  S. Muthusamy,et al.  Facile synthesis of ternary polypyrrole/Prussian blue/Titanium dioxide composite and their performance for isopropyl alcohol sensing at room temperature , 2019, INTERNATIONAL CONFERENCE ON INVENTIVE MATERIAL SCIENCE APPLICATIONS : ICIMA 2019.

[97]  Kimihiro Adachi,et al.  A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection , 1998 .

[98]  Qi Wang,et al.  Mini review: Recent advances in long period fiber grating biological and chemical sensors , 2018, Instrumentation Science & Technology.

[99]  Ignacio Del Villar,et al.  Generation of Lossy Mode Resonances With Absorbing Thin-Films , 2010, Journal of Lightwave Technology.

[100]  Zhongze Gu,et al.  Photonic crystal for gas sensing , 2013 .

[101]  Jun Zhang,et al.  High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film , 2018 .

[102]  I. Del Villar,et al.  Experimental demonstration of lossy mode and surface plasmon resonance generation with Kretschmann configuration. , 2015, Optics letters.

[103]  C. R. Zamarreño,et al.  Humidity sensor fabricated by deposition of SnO2 layers onto optical fibers , 2013, Other Conferences.

[104]  Jun Zhang,et al.  Tungsten disulfide (WS2) based all-fiber-optic humidity sensor. , 2016, Optics express.

[105]  A. Ganesan,et al.  Fiber optics assisted ammonia gas detection property of gamma irradiated magnesium tetraborate , 2019, Sensors and Actuators A: Physical.

[106]  S. Yee,et al.  A fiber-optic chemical sensor based on surface plasmon resonance , 1993 .

[107]  A. Wilson Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath , 2015, Metabolites.

[108]  Mark D. Losego,et al.  Surface plasmon resonance in conducting metal oxides , 2006 .

[109]  M. Hernaez,et al.  Lossy Mode Resonance Generation With Indium-Tin-Oxide-Coated Optical Fibers for Sensing Applications , 2010, Journal of Lightwave Technology.

[110]  S. Vadivel,et al.  High performance ethanol and acetone gas sensor based nanocrystalline MnCo2O4 using clad-modified fiber optic gas sensor , 2018, Optical Materials.

[111]  Aaron Kevin Cameron Theoderaj,et al.  CdS coated clad-modified fiber optic sensor for detection of NO2 gas , 2019, Materials Research Express.

[112]  L. Balakrishnan,et al.  Influence of surface functionalization on the gas sensing characteristics of ZnO nanorhombuses , 2017 .

[113]  I.R. Matias,et al.  Monitoring of Electric Buses within an Urban Smart City Environment , 2020, 2020 IEEE Sensors.

[114]  Banshi D. Gupta,et al.  Zinc oxide thin film/nanorods based lossy mode resonance hydrogen sulphide gas sensor , 2015 .

[115]  Alessia Bellini,et al.  Application and Uses of Electronic Noses for Clinical Diagnosis on Urine Samples: A Review , 2016, Sensors.

[116]  R. Tabassum,et al.  Recent trends in surface plasmon resonance based fiber–optic gas sensors utilizing metal oxides and carbon nanomaterials as functional entities , 2020 .

[117]  Alan J. Hurd,et al.  Review of sol-gel thin film formation , 1992 .

[118]  N. Sakauchi [Gas chromatography]. , 2020, Horumon to rinsho. Clinical endocrinology.

[119]  D. Sastikumar,et al.  Effect of functional groups on dielectric, optical gas sensing properties of graphene oxide and reduced graphene oxide at room temperature , 2015 .

[120]  D. Sastikumar,et al.  Nanocrystalline cerium oxide coated fiber optic gas sensor , 2014 .

[121]  D. Sastikumar,et al.  Carbon nanotubes coated fiber optic ammonia gas sensor , 2011, OPTO.

[122]  I. Matías,et al.  Generation of Lossy Mode Resonances in Planar Waveguides Toward Development of Humidity Sensors , 2019, Journal of Lightwave Technology.

[123]  Agostino Iadicicco,et al.  Single-Ended Long Period Fiber Grating Coated With Polystyrene Thin Film for Butane Gas Sensing , 2018, Journal of Lightwave Technology.

[124]  Banshi D. Gupta,et al.  A novel probe for a fiber optic humidity sensor , 2001 .

[125]  S. S. Kim,et al.  Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances. , 2018, Journal of hazardous materials.