A general framework for the assessment of solar fuel technologies

The conversion of carbon dioxide and water into fuels in a solar refinery presents a potential solution for reducing greenhouse gas emissions, while providing a sustainable source of fuels and chemicals. Towards realizing such a solar refinery, there are many technological advances that must be met in terms of capturing and sourcing the feedstocks (namely CO2, H2O, and solar energy) and in catalytically converting CO2 and H2O. In the first part of this paper, we review the state-of-the-art in solar energy collection and conversion to solar utilities (heat, electricity, and as a photon source for photo-chemical reactions), CO2 capture and separation technology, and non-biological methods for converting CO2 and H2O to fuels. The two principal methods for CO2 conversion include (1) catalytic conversion using solar-derived hydrogen and (2) direct reduction of CO2 using H2O and solar energy. Both hydrogen production and direct CO2 reduction can be performed electro-catalytically, photo-electrochemically, photo-catalytically, and thermochemically. All four of these methods are discussed. In the second part of this paper, we utilize process modeling to assess the energy efficiency and economic feasibility of a generic solar refinery. The analysis demonstrates that the realization of a solar refinery is contingent upon significant technological improvements in all areas described above (solar energy capture and conversion, CO2 capture, and catalytic conversion processes).

[1]  Eric J. Dufek,et al.  Operation of a Pressurized System for Continuous Reduction of CO2 , 2012 .

[2]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[3]  Tatsuya Kodama,et al.  Thermochemical cycles for high-temperature solar hydrogen production. , 2007 .

[4]  S. Ebbesen,et al.  Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells , 2012 .

[5]  Nick Serpone,et al.  Photocatalyzed destruction of water contaminants , 1991 .

[6]  Alan W. Weimer,et al.  Likely near-term solar-thermal water splitting technologies , 2004 .

[7]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[8]  John H. Kennedy,et al.  Comments Regarding Electronic Conductivity in Solid Electrolytes , 1977 .

[9]  Rajshree Singh,et al.  Novel electrocatalysts for generating oxygen from alkaline water electrolysis , 2007 .

[10]  Hironori Arakawa,et al.  Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. , 2003, Chemical communications.

[11]  Jun Kubota,et al.  Photocatalytic Water Splitting Using Oxynitride and Nitride Semiconductor Powders for Production of Solar Hydrogen , 2013 .

[12]  Avelino Corma,et al.  185 nm photoreduction of CO2 to methane by water. Influence of the presence of a basic catalyst. , 2012, Journal of the American Chemical Society.

[13]  Amal K. Ghosh,et al.  Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes , 1977 .

[14]  Eugeny Y. Kenig,et al.  CO2‐Alkanolamine Reaction Kinetics: A Review of Recent Studies , 2007 .

[15]  Dongke Zhang,et al.  Recent progress in alkaline water electrolysis for hydrogen production and applications , 2010 .

[16]  L. Martin,et al.  Use of solar energy to reduce carbon dioxide , 1980 .

[17]  Ryuhei Nakamura,et al.  Oxygen photoevolution on a tantalum oxynitride photocatalyst under visible-light irradiation: how does water photooxidation proceed on a metal-oxynitride surface? , 2005, The journal of physical chemistry. B.

[18]  Steven L. Suib,et al.  Enhanced electrocatalytic reduction of CO2/H2O to paraformaldehyde at Pt/metal oxide interfaces , 2010 .

[19]  Héctor D. Abruña,et al.  Electrocatalysis of CO2 reduction at surface modified metallic and semiconducting electrodes , 1986 .

[20]  Jun Yano,et al.  Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation , 2008 .

[21]  K. Ogura,et al.  Electrochemical reduction of carbon dioxide to ethylene: Mechanistic approach , 2013 .

[22]  Mark E. Davis,et al.  Low-temperature, manganese oxide-based, thermochemical water splitting cycle , 2012, Proceedings of the National Academy of Sciences.

[23]  Hiromi Yamashita,et al.  Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts , 2012 .

[24]  Gordon L. Nelson,et al.  Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures , 1998 .

[25]  T. Razykov,et al.  Solar photovoltaic electricity: Current status and future prospects , 2011 .

[26]  M. Iqbal An introduction to solar radiation , 1983 .

[27]  Jianli Hu,et al.  An overview of hydrogen production technologies , 2009 .

[28]  Christopher W. Jones,et al.  Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. , 2008, Journal of the American Chemical Society.

[29]  Ranko Goic,et al.  review of solar photovoltaic technologies , 2011 .

[30]  Ryan P. Lively,et al.  Synthesis–Structure–Property Relationships for Hyperbranched Aminosilica CO2 Adsorbents , 2009 .

[31]  Bruce H. Mahan,et al.  Photolysis of Carbon Dioxide , 1960 .

[32]  Osamu Ishitani,et al.  Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2 , 1993 .

[33]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[34]  I. A. Raj,et al.  Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells , 1993 .

[35]  P. Denholm,et al.  The Value of Concentrating Solar Power and Thermal Energy Storage , 2010, IEEE Transactions on Sustainable Energy.

[36]  Pratim Biswas,et al.  Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts , 2010 .

[37]  Juan Adánez,et al.  Progress in chemical-looping combustion and reforming technologies , 2012 .

[38]  A. Tiwari,et al.  Technological status of Cu2ZnSn(S,Se)4 thin film solar cells , 2013 .

[39]  Tatsuya Kodama,et al.  Thermochemical two-step water splitting by ZrO2-supported NixFe3-xO4 for solar hydrogen production , 2008 .

[40]  Jan Augustynski,et al.  Photoelectrochemical Properties of Nanostructured Tungsten Trioxide Films , 2001 .

[41]  Michele Aresta,et al.  Reaction of silylalkylmono- and silylalkyldi-amines with carbon dioxide: evidence of formation of inter- and intra-molecular ammonium carbamates and their conversion into organic carbamates of industrial interest under carbon dioxide catalysis , 2002 .

[42]  Michael Grätzel,et al.  Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis , 2005 .

[43]  F. Barbir PEM electrolysis for production of hydrogen from renewable energy sources , 2005 .

[44]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .

[45]  J. Wu,et al.  Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor , 2008 .

[46]  Sung-Hwan Han,et al.  Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process) , 1999 .

[47]  Xiaogang Zhang,et al.  Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode , 2005 .

[48]  Mj Martin Tuinier,et al.  Techno-economic evaluation of cryogenic CO2 capture—A comparison with absorption and membrane technology , 2011 .

[49]  K. Hara,et al.  Electrocatalytic Formation of CH 4 from CO 2 on a Pt Gas Diffusion Electrode , 1997 .

[50]  M. Grätzel Dye-sensitized solar cells , 2003 .

[51]  E. Skoplaki,et al.  ON THE TEMPERATURE DEPENDENCE OF PHOTOVOLTAIC MODULE ELECTRICAL PERFORMANCE: A REVIEW OF EFFICIENCY/ POWER CORRELATIONS , 2009 .

[52]  Akira Fujishima,et al.  Recent topics in photoelectrochemistry: achievements and future prospects , 2000 .

[53]  M. Y. Sulaiman,et al.  Review of materials for solar thermal collectors , 2005 .

[54]  Prathamesh Pavaskar,et al.  Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions , 2011 .

[55]  Alan W. Weimer,et al.  CoFe2O4 on a porous Al2O3 nanostructure for solar thermochemical CO2 splitting , 2012 .

[56]  Jingguang G. Chen,et al.  Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. , 2010, Angewandte Chemie.

[57]  A. Sum,et al.  Catalysis in solid oxide fuel cells. , 2011, Annual review of chemical and biomolecular engineering.

[58]  J. Poston,et al.  Adsorption of CO2 on molecular sieves and activated carbon , 2001 .

[59]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[60]  A. Nozik Nanoscience and nanostructures for photovoltaics and solar fuels. , 2010, Nano letters.

[61]  Alan W. Weimer,et al.  Solar‐thermal production of renewable hydrogen , 2009 .

[62]  Hideo Tamura,et al.  Photoelectrochemical Reduction of Carbon Dioxide at p-Type Gallium Phosphide Electrodes in the Presence of Crown Ether , 1982 .

[63]  Tatsuya Kodama,et al.  Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices , 2009 .

[64]  J. Zuboy,et al.  Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2 , 2009 .

[65]  Michael Grätzel,et al.  Photoelectrochemical Hydrogen Production , 2012 .

[66]  Kazuhiko Maeda,et al.  Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. , 2010, Journal of the American Chemical Society.

[67]  Isao Taniguchi,et al.  Photoelectrochemical reduction of carbon dioxide using polyaniline-coated silicon , 1983 .

[68]  Gilles Flamant,et al.  Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides , 2006 .

[69]  Ying Li,et al.  Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels , 2011 .

[70]  Nilay Shah,et al.  An overview of CO2 capture technologies , 2010 .

[71]  Jason E. Bara,et al.  Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids , 2009 .

[72]  W. S. Winston Ho,et al.  CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol) , 2006 .

[73]  J. Mason,et al.  The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US , 2009 .

[74]  Reshef Tenne,et al.  Photoelectrochemical reduction of carbon dioxide in aqueous solutions on p-GaP electrodes: an a.c. impedance study with phase-sensitive detection , 1996 .

[75]  C. Bouallou,et al.  Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture , 2010 .

[76]  Bruce G. Miller,et al.  Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture , 2002 .

[77]  Peter G. Loutzenhiser,et al.  CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic Analysis , 2008 .

[78]  S. Ebbesen,et al.  Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability , 2011 .

[79]  Gary T. Rochelle,et al.  Amine Scrubbing for CO2 Capture , 2009, Science.

[80]  Gilles Flamant,et al.  Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production , 2007 .

[81]  K. Lackner,et al.  Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy , 2011 .

[82]  Robert Perret,et al.  Solar Thermochemical Hydrogen Production Research (STCH) , 2011 .

[83]  Hui Li,et al.  The Electro-Reduction of Carbon Dioxide in a Continuous Reactor , 2005 .

[84]  Hara,et al.  Cobalt Ion-Doped TiO(2) Photocatalyst Response to Visible Light. , 2000, Journal of colloid and interface science.

[85]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[86]  Ruifeng Li,et al.  Effect of heating temperature on photocatalytic reduction of CO2 by N–TiO2 nanotube catalyst , 2012 .

[87]  W. Chueh,et al.  A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[88]  Denis Clodic,et al.  CO2 capture by antisublimation process and its technical economic analysis , 2013 .

[89]  Hyun Seon Hong,et al.  Microstructure and electrical conductivity of Ni/YSZ and NiO/YSZ composites for high-temperature electrolysis prepared by mechanical alloying , 2005 .

[90]  Edson A. Ticianelli,et al.  PROGRESS ON THE DEVELOPMENT OF ACTIVATED CATHODES FOR WATER ELECTROLYSIS , 1992 .

[91]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[92]  P. Hebert,et al.  III–V multijunction solar cells for concentrating photovoltaics , 2009 .

[93]  R. Noble,et al.  Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture. , 2010, Accounts of chemical research.

[94]  Nelson A. Kelly,et al.  Optimization of solar powered hydrogen production using photovoltaic electrolysis devices , 2008 .

[95]  Martin L. Green,et al.  Measurement, standards, and data needs for CO2 capture materials: a critical review. , 2013, Environmental science & technology.

[96]  Omar Hurtado,et al.  CO2 Pipeline Infrastructure – Lessons Learnt , 2014 .

[97]  Hartmut Wendt,et al.  Materials research and development of electrocatalysts for alkaline water electrolysis , 1989 .

[98]  Avelino Corma,et al.  Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges , 2013 .

[99]  K. Tennakone,et al.  Photoreduction of carbonic acid by mercury coated n-titanium dioxide , 1984 .

[100]  Christopher W. Jones,et al.  CO(2) capture from dilute gases as a component of modern global carbon management. , 2011, Annual review of chemical and biomolecular engineering.

[101]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.

[102]  S. Grigoriev,et al.  Pure hydrogen production by PEM electrolysis for hydrogen energy , 2006 .

[103]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[104]  Soteris A. Kalogirou,et al.  The potential of solar industrial process heat applications , 2003 .

[105]  J. Duffie,et al.  Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation , 1982 .

[106]  K. Ohta,et al.  Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes , 2006 .

[107]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[108]  A. L. Spivak,et al.  Direct solar-thermal hydrogen production from water using nozzle/skimmer and glow discharge , 1996, IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference.

[109]  K. Ohta,et al.  Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH/methanol , 1999 .

[110]  K. Kreuer,et al.  On the development of proton conducting materials for technological applications , 1997 .

[111]  B. Spigarelli,et al.  Opportunities and challenges in carbon dioxide capture , 2013 .

[112]  Akihiko Kudo,et al.  Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution , 2010 .

[113]  Masami Shibata,et al.  High performance RuPd catalysts for CO2 reduction at gas-diffusion electrodes , 1997 .

[114]  Christos T. Maravelias,et al.  Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis , 2011 .

[115]  Souzana Lorentzou,et al.  Hydrogen production in solar reactors , 2007 .

[116]  A. Bandi,et al.  Electrochemical Reduction of Carbon Dioxide on Conductive Metallic Oxides , 1990 .

[117]  Hsisheng Teng,et al.  Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination , 2008 .

[118]  W. Chueh,et al.  High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria , 2010, Science.

[119]  Stuart Licht,et al.  Efficient Solar Water Splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis , 2000 .

[120]  John T. S. Irvine,et al.  Electrochemical reduction of CO2 in a proton conducting solid oxide electrolyser , 2011 .

[121]  Tatsuya Kodama,et al.  Thermochemical hydrogen production by a redox system of ZrO2-supported Co(II)-ferrite , 2004 .

[122]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[123]  Peter Styring,et al.  Comparative study of solvent properties for carbon dioxide absorption , 2010 .

[124]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[125]  Isao Taniguchi,et al.  The reduction of carbon dioxide at illuminated p-type semiconductor electrodes in nonaqueous media , 1984 .

[126]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[127]  Nobutaka Endo,et al.  Electrochemical Reduction of CO 2 with a Functional Gas‐Diffusion Electrode in Aqueous Solutions With and Without Propylene Carbonate , 1999 .

[128]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[129]  A. Steinfeld Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions , 2002 .

[130]  Devin T. Whipple Microfluidic reactor for the electrochemical reduction of carbon dioxide , 2010 .

[131]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[132]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[133]  Aaron T. Marshall,et al.  Electrochemical characterisation of IrxSn1−xO2 powders as oxygen evolution electrocatalysts , 2006 .

[134]  Clem E. Powell,et al.  Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases , 2006 .

[135]  Alan W. Weimer,et al.  A spinel ferrite/hercynite water-splitting redox cycle , 2010 .

[136]  Xufeng Wang,et al.  Approaching the Shockley-Queisser limit in GaAs solar cells , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[137]  Nathan S. Lewis,et al.  Proton exchange membrane electrolysis sustained by water vapor , 2011 .

[138]  Calvin H. Bartholomew,et al.  Fundamentals of Industrial Catalytic Processes: Bartholomew/Fundamentals , 2005 .

[139]  Rahul Anantharaman,et al.  Low-temperature CO2 capture technologies – Applications and potential , 2013 .

[140]  Y. Zhai,et al.  Preparation of LSM–YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism , 2009 .

[141]  Paitoon Tontiwachwuthikul,et al.  Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams , 2006 .

[142]  Mohamed I. Awad,et al.  Enhanced water electrolysis : Electrocatalytic generation of oxygen gas at manganese oxide nanorods modified electrodes , 2007 .

[143]  Jiujun Zhang,et al.  A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. , 2014, Chemical Society reviews.

[144]  Hung Ji Huang,et al.  Application of Optical-fiber Photoreactor for CO2 Photocatalytic Reduction , 2008 .

[145]  Carl M. Stoots,et al.  Results of recent high temperature coelectrolysis studies at the Idaho National Laboratory , 2007 .

[146]  Ryu Abe,et al.  Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation , 2010 .

[147]  Badie I. Morsi,et al.  Progress in carbon dioxide capture and separation research for gasification-based power generation point sources , 2008 .

[148]  Jianjun He,et al.  Photoelectrochemistry of Nanostructured WO3 Thin Film Electrodes for Water Oxidation: Mechanism of Electron Transport , 2000 .

[149]  Lucie Obalová,et al.  Effect of TiO2 particle size on the photocatalytic reduction of CO2 , 2009 .

[150]  F. Larachi,et al.  Ionic liquids for CO2 capture—Development and progress , 2010 .

[151]  Makoto Ogawa,et al.  Photocatalytic Reduction of CO2 with H2O on Ti-Containing Porous Silica Thin Film Photocatalysts , 2002 .

[152]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[153]  Xinhua Liang,et al.  Efficient Generation of H2 by Splitting Water with an Isothermal Redox Cycle , 2013, Science.

[154]  D. Leung,et al.  Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC) , 2008 .

[155]  Nancy L. Barber,et al.  Estimated use of water in the United States in 2005 , 2009 .

[156]  Bernd Rech,et al.  Technological status of polycrystalline silicon thin-film solar cells on glass , 2013 .

[157]  Tsuyoshi Takata,et al.  The Use of TiCl4 Treatment to Enhance the Photocurrent in a TaON Photoelectrode under Visible Light Irradiation , 2005 .

[158]  Stéphane Abanades,et al.  CO2 Dissociation and Upgrading from Two-Step Solar Thermochemical Processes Based on ZnO/Zn and SnO2/SnO Redox Pairs , 2010 .

[159]  Christos T. Maravelias,et al.  Fuel production from CO2 using solar-thermal energy: system level analysis , 2012 .

[160]  A. Kornyshev,et al.  Ionic liquids at electrified interfaces. , 2014, Chemical reviews.

[161]  A. Steinfeld Solar thermochemical production of hydrogen--a review , 2005 .

[162]  Somnath C. Roy,et al.  Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. , 2010, ACS nano.

[163]  Richard L. Kurtz,et al.  Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces , 2011 .

[164]  Nathan P. Siegel,et al.  Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines , 2008 .

[165]  Roland Kalb,et al.  Ionic liquids for post-combustion CO2 absorption , 2010 .

[166]  P. Kenis,et al.  Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction , 2010 .

[167]  Seda Keskin,et al.  Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? , 2010, ChemSusChem.

[168]  Shanshan Xu,et al.  Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0.75Sr0.25Cr0.5Mn0.5O3 − δ electrode , 2013 .

[169]  A. Sayari,et al.  Applications of Pore-Expanded Mesoporous Silica. 5. Triamine Grafted Material with Exceptional CO2 Dynamic and Equilibrium Adsorption Performance , 2007 .

[170]  K. W. Frese,et al.  Electrochemical Reduction of CO 2 at Intentionally Oxidized Copper Electrodes , 1991 .

[171]  E. Anthony Solid looping cycles: A new technology for coal conversion , 2008 .

[172]  Makoto Yoshida,et al.  Photoelectrochemical reduction products of carbon dioxide at metal coated p-GaP photocathodes in non-aqueous electrolytes , 1989 .

[173]  Paul Scovazzo,et al.  Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes , 2004 .

[174]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[175]  Chenghao Yang,et al.  High temperature solid oxide electrolysis cell employing porous structured (La0.75Sr0.25)0.95MnO3 with enhanced oxygen electrode performance , 2010 .

[176]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[177]  Mónica Alonso,et al.  Comparison of CaO-Based Synthetic CO2 Sorbents under Realistic Calcination Conditions , 2007 .

[178]  Susumu Kuwabata,et al.  Effects of electrolytes on the photoelectrochemical reduction of carbon dioxide at illuminated p-type cadmium telluride and p-type indium phosphide electrodes in aqueous solutions , 1988 .

[179]  Akihiko Kudo,et al.  Development of photocatalyst materials for water splitting , 2006 .

[180]  Jian-Guo Yu,et al.  Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst , 2009 .

[181]  Qiang Wang,et al.  CO2 capture by solid adsorbents and their applications: current status and new trends , 2011 .

[182]  J. Newman,et al.  Mass Transport in Gas‐Diffusion Electrodes: A Diagnostic Tool for Fuel‐Cell Cathodes , 1998 .

[183]  Yuichi Ichihashi,et al.  Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts , 1995 .

[184]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[185]  Arthur J. Nozik,et al.  Photoelectrochemistry: Applications to Solar Energy Conversion , 1978 .

[186]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[187]  Wei Zhao,et al.  Synthesis and characterization of novel high-performance composite electrocatalysts for the oxygen evolution in solid polymer electrolyte (SPE) water electrolysis ☆ , 2012 .

[188]  Bhupendra Kumar,et al.  Photochemical and photoelectrochemical reduction of CO2. , 2012, Annual review of physical chemistry.

[189]  Y. Nakato,et al.  An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Modification with Small Metal Particles , 1998 .

[190]  Reed J. Jensen,et al.  Direct Solar Reduction of CO2 to Fuel: First Prototype Results , 2002 .

[191]  Yoshio Hori,et al.  Electrochemical Reduction of Carbon Dioxide at a Platinum Electrode in Acetonitrile‐Water Mixtures , 2000 .

[192]  Saad Mekhilef,et al.  A review on solar energy use in industries , 2011 .

[193]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[194]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[195]  Ryutaro Hino,et al.  Flowsheet study of the thermochemical water-splitting iodine-sulfur process for effective hydrogen production , 2007 .

[196]  Craig A. Grimes,et al.  Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis , 2011 .

[197]  Hideki Kato,et al.  The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation , 2008 .

[198]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[199]  John T. S. Irvine,et al.  Efficient Reduction of CO2 in a Solid Oxide Electrolyzer , 2008 .

[200]  Feng Xin,et al.  Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts. , 2011, Journal of colloid and interface science.

[201]  Muhammad Tahir,et al.  Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor , 2013 .

[202]  C. Lagrost,et al.  Electrochemical reactivity in room-temperature ionic liquids. , 2008, Chemical reviews.

[203]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[204]  Y. Hori,et al.  Electrochemical CO 2 Reduction on Metal Electrodes , 2008 .

[205]  Tetsuya Tsuda,et al.  Polyethyleneimine and macrocyclic polyamine silica gels acting as carbon dioxide absorbents , 1992 .

[206]  Kazuhiro Sayama,et al.  Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-. , 2005, The journal of physical chemistry. B.

[207]  J. Ivy,et al.  Summary of Electrolytic Hydrogen Production , 2004 .

[208]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[209]  Neil S. Spinner,et al.  Recent Progress in the Electrochemical Conversion and Utilization of CO2 , 2012 .

[210]  Nathan P. Siegel,et al.  Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles , 2008 .

[211]  Aamir Hanif,et al.  A study on high temperature CO2 capture by improved hydrotalcite sorbents , 2014 .

[212]  J. F. Houlihan,et al.  Doped polycrystalline TiO2 electrodes for the photo-assisted electrolysis of water , 1978 .

[213]  Graeme Puxty,et al.  Toward the understanding of chemical absorption processes for post-combustion capture of carbon dioxide: electronic and steric considerations from the kinetics of reactions of CO2(aq) with sterically hindered amines. , 2013, Environmental science & technology.

[214]  K. W. Frese,et al.  Reduction of CO 2 on n ‐ GaAs Electrodes and Selective Methanol Synthesis , 1984 .

[215]  Zou Yong,et al.  Adsorption of carbon dioxide at high temperature—a review , 2002 .

[216]  H. Takenaka,et al.  Properties of Nafion membranes under PEM water electrolysis conditions , 2011 .

[217]  Michael O'Keeffe,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[218]  Martin A. Green,et al.  Progress and outlook for high-efficiency crystalline silicon solar cells , 2001 .

[219]  K. R. Sridhar,et al.  Oxygen Production on Mars Using Solid Oxide Electrolysis , 1995 .

[220]  D. Clodic,et al.  A new Method for CO2 Capture: Frosting CO2 at Atmospheric Pressure , 2003 .

[221]  P. Stroeve,et al.  Innovation in concentrated solar power , 2011 .

[222]  D. Mills Advances in solar thermal electricity technology , 2004 .

[223]  Huili Zhang,et al.  Concentrated solar power plants: Review and design methodology , 2013 .

[224]  T. Kodama High-temperature solar chemistry for converting solar heat to chemical fuels , 2003 .

[225]  Pablo Sanchis,et al.  Hydrogen Production From Water Electrolysis: Current Status and Future Trends , 2012, Proceedings of the IEEE.

[226]  Etsuko Fujita,et al.  Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. , 2013, Chemical communications.

[227]  Masaaki Kitano,et al.  Recent developments in titanium oxide-based photocatalysts , 2007 .

[228]  Kazunari Domen,et al.  New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light , 2007 .

[229]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[230]  Gabor A. Somorjai,et al.  Synthesis, bulk, and surface characterization of niobium-doped Fe2O3 single crystals , 1986 .

[231]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[232]  I. E. Grey,et al.  Efficiency of solar water splitting using semiconductor electrodes , 2006 .

[233]  C. Dey,et al.  Cooling of photovoltaic cells under concentrated illumination: a critical review , 2005 .

[234]  Yutaka Tamaura,et al.  Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle , 1995 .

[235]  G. N. Baum,et al.  Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry , 2013 .

[236]  G. Centi,et al.  Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries , 2013 .

[237]  S. C. Kaushik,et al.  State-of-the-art of solar thermal power plants—A review , 2013 .

[238]  Wim Turkenburg,et al.  A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies , 2006 .

[239]  Monoj Kumar Mondal,et al.  Progress and trends in CO2 capture/separation technologies: A review , 2012 .

[240]  Nathan S. Lewis,et al.  Basic Research Needs for Solar Energy Utilization: report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005 , 2005 .

[241]  W H Smart,et al.  Study of electrolytic dissociation of CO2-H2O using a solid oxide electrolyte. NASA CR-680. , 1967, NASA contractor report. NASA CR. United States. National Aeronautics and Space Administration.

[242]  Youssef Belmabkhout,et al.  Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions , 2009 .

[243]  P. Simon,et al.  Energy applications of ionic liquids , 2014 .

[244]  L. Chaar,et al.  Review of photovoltaic technologies , 2011 .

[245]  Keith Scott,et al.  Solid Acids as Electrolyte Materials for Proton Exchange Membrane (PEM) Electrolysis: Review , 2012 .

[246]  M. Laguna-Bercero Recent advances in high temperature electrolysis using solid oxide fuel cells: A review , 2012 .

[247]  N. Guillet,et al.  Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis , 2011 .

[248]  Luís Alberto Avaca,et al.  Electrochemical and morphological studies of electrodeposited Ni–Fe–Mo–Zn alloys tailored for water electrolysis , 2004 .

[249]  S. Iniyan,et al.  A review of solar thermal technologies , 2010 .

[250]  S. Morrison,et al.  Carbon dioxide reduction on gallium arsenide electrodes , 1985 .

[251]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[252]  Armin D. Ebner,et al.  State-of-the-art Adsorption and Membrane Separation Processes for Carbon Dioxide Production from Carbon Dioxide Emitting Industries , 2009 .

[253]  Robert Palumbo,et al.  DESIGN ASPECTS OF SOLAR THERMOCHEMICAL ENGINEERING—A CASE STUDY: TWO-STEP WATER-SPLITTING CYCLE USING THE Fe3O4/FeO REDOX SYSTEM , 1999 .

[254]  Daniel G. Nocera,et al.  A self-healing oxygen-evolving catalyst. , 2009, Journal of the American Chemical Society.

[255]  Renata Reisfeld,et al.  New developments in luminescence for solar energy utilization , 2010 .

[256]  Lucie Obalová,et al.  Effect of silver doping on the TiO2 for photocatalytic reduction of CO2 , 2010 .

[257]  Craig A. Grimes,et al.  Light, Water, Hydrogen , 2008 .

[258]  S. Barnett,et al.  Syngas Production By Coelectrolysis of CO2/H2O: The Basis for a Renewable Energy Cycle , 2009 .

[259]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[260]  Craig A. Grimes,et al.  Aqueous Growth of Pyramidal-Shaped BiVO4 Nanowire Arrays and Structural Characterization: Application to Photoelectrochemical Water Splitting , 2010 .

[261]  Kazuhiko Maeda,et al.  Effect of TiCl4 treatment on the photoelectrochemical properties of LaTiO2N electrodes for water splitting under visible light , 2010 .

[262]  G. Centi,et al.  Opportunities and prospects in the chemical recycling of carbon dioxide to fuels , 2009 .

[263]  M. Berenguel,et al.  Thermo-economic design optimization of parabolic trough solar plants for industrial process heat applications with memetic algorithms , 2014 .

[264]  Akihiko Kudo,et al.  Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte , 1995 .

[265]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[266]  Terry Wall,et al.  Combustion processes for carbon capture , 2007 .

[267]  Nariaki Sakaba,et al.  Thermochemical water-splitting cycle using iodine and sulfur , 2009 .

[268]  Henry W. Pennline,et al.  Study of CO2 Absorption and Desorption in a Packed Column , 2001 .

[269]  Claude Etievant,et al.  Electrochemical performances of PEM water electrolysis cells and perspectives , 2011 .

[270]  John Newman,et al.  Review: An Economic Perspective on Liquid Solar Fuels , 2012 .

[271]  Nathan P. Siegel,et al.  Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials , 2008 .