Synchronization criteria for impulsive complex dynamical networks with time-varying delay

This paper investigates the output synchronization of a class of impulsive complex dynamical networks with time-varying delay. By constructing suitable Lyapunov functionals, some new and useful conditions are obtained to guarantee the local and global exponential output synchronization of the impulsive complex networks. Finally, numerical examples are given to demonstrate the effectiveness of the theoretical results.

[1]  Jin Zhou,et al.  Synchronization in complex delayed dynamical networks with impulsive effects , 2007 .

[2]  Zhi-Hong Guan,et al.  Passive stability and synchronization of complex spatio-temporal switching networks with time delays , 2009, Autom..

[3]  David J. Hill,et al.  Passivity-based control and synchronization of general complex dynamical networks , 2009, Autom..

[4]  S. Boccaletti,et al.  Synchronization is enhanced in weighted complex networks. , 2005, Physical review letters.

[5]  Tingwen Huang,et al.  Synchronization of chaotic systems with time-varying coupling delays , 2011 .

[6]  Tianping Chen,et al.  New approach to synchronization analysis of linearly coupled ordinary differential systems , 2006 .

[7]  Jinde Cao,et al.  Global Synchronization of Linearly Hybrid Coupled Networks with Time-Varying Delay , 2008, SIAM J. Appl. Dyn. Syst..

[8]  Zengrong Liu,et al.  Robust impulsive synchronization of complex delayed dynamical networks , 2008 .

[9]  Wenlian Lu,et al.  Synchronization of Discrete-Time Dynamical Networks with Time-Varying Couplings , 2008, SIAM J. Math. Anal..

[10]  Tingwen Huang,et al.  Synchronization criteria in complex dynamical networks with nonsymmetric coupling and multiple time-varying delays , 2012 .

[11]  Zengqiang Chen,et al.  Pinning control of complex dynamical networks with heterogeneous delays , 2008, Comput. Math. Appl..

[12]  Guanrong Chen,et al.  Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback , 2009 .

[13]  Licheng Jiao,et al.  Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength , 2008 .

[14]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[15]  Jin-Liang Wang,et al.  Local and global exponential output synchronization of complex delayed dynamical networks , 2012 .

[16]  David J. Hill,et al.  Impulsive Consensus for Complex Dynamical Networks with Nonidentical Nodes and Coupling Time-Delays , 2011, SIAM J. Control. Optim..

[17]  Tingwen Huang,et al.  Local and global exponential synchronization of complex delayed dynamical networkswith general topology , 2011 .

[18]  Alexey A. Koronovskii,et al.  Synchronization in Networks of Slightly nonidentical Elements , 2008, Int. J. Bifurc. Chaos.

[19]  Shihua Chen,et al.  Global synchronization of nonlinearly coupled complex networks with non-delayed and delayed coupling , 2010 .

[20]  Junan Lu,et al.  Pinning adaptive synchronization of a general complex dynamical network , 2008, Autom..

[21]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[22]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[23]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[24]  Zengqiang Chen,et al.  Pinning weighted complex networks with heterogeneous delays by a small number of feedback controllers , 2008, Science in China Series F: Information Sciences.

[25]  Choy Heng Lai,et al.  Adaptive–impulsive synchronization of uncertain complex dynamical networks , 2008 .

[26]  Daoyi Xu,et al.  Delay-dependent stability analysis for impulsive neural networks with time varying delays , 2008, Neurocomputing.

[27]  Huai-Ning Wu,et al.  Passivity analysis of complex dynamical networks with multiple time-varying delays , 2012 .