INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 COMPLEX DYNAMICS OF MULTIBROT SETS FOR JUNGCK ISHIKAWA ITERATION

The generation of fractals and study of the dynamics of polynomials is one of the emerging and interesting fields of research nowadays. We introduce in this paper the dynamics of modified multibrot function z d - z + c = 0 for d

[1]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[2]  S. Ishikawa Fixed points by a new iteration method , 1974 .

[3]  Leonie Moench Computers Pattern Chaos And Beauty , 2016 .

[4]  Xingyuan Wang,et al.  ANALYSIS OF C-PLANE FRACTAL IMAGES FROM z ← zα + c FOR (α < 0) , 2000 .

[5]  J. Milnor Dynamics in one complex variable , 2000 .

[6]  Kumar Vivek,et al.  Strong Convergence and Stability results for Jungck-SP iterative scheme , 2011 .

[7]  Ashish Negi,et al.  Non Linear Dynamics of Ishikawa Iteration , 2010 .

[8]  Earl F. Glynn The evolution of the gingerbread man , 1991, Comput. Graph..

[9]  ALFRED OLUFEMI BOSEDE,et al.  STRONG CONVERGENCE RESULTS FOR THE JUNGCK-ISHIKAWA AND JUNGCK-MANN ITERATION PROCESSES , 2010 .

[10]  Uday G. Gujar,et al.  Analysis of z-plane fractal images from z <-- z alpha + c for alpha < 0 , 1993, Comput. Graph..

[11]  Ken Shirriff,et al.  An investigation of fractals generated by z --> 1/zn + c , 1993, Comput. Graph..

[12]  J. Milnor,et al.  Dynamics in One Complex Variable: Introductory Lectures , 2000 .

[13]  Ashish Negi,et al.  New Julia Sets of Ishikawa Iterates , 2010 .

[14]  Peter H. Richter,et al.  The Beauty of Fractals , 1988, 1988.

[15]  Ashish Negi,et al.  Complex Dynamics of Ishikawa Iterates for Non Integer Values , 2010 .

[16]  Uday G. Gujar,et al.  Fractal images from z <-- z alpha + c in the complex z-plane , 1992, Comput. Graph..

[17]  G. Jungck,et al.  Commuting Mappings and Fixed Points , 1976 .

[18]  Dierk Schleicher,et al.  Symmetries of fractals revisited , 1996 .

[19]  S. Krantz Fractal geometry , 1989 .

[20]  A. G. Davis Philip,et al.  Warped midgets in the Mandelbrot set , 1994, Comput. Graph..