INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 COMPLEX DYNAMICS OF MULTIBROT SETS FOR JUNGCK ISHIKAWA ITERATION
暂无分享,去创建一个
[1] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[2] S. Ishikawa. Fixed points by a new iteration method , 1974 .
[3] Leonie Moench. Computers Pattern Chaos And Beauty , 2016 .
[4] Xingyuan Wang,et al. ANALYSIS OF C-PLANE FRACTAL IMAGES FROM z ← zα + c FOR (α < 0) , 2000 .
[5] J. Milnor. Dynamics in one complex variable , 2000 .
[6] Kumar Vivek,et al. Strong Convergence and Stability results for Jungck-SP iterative scheme , 2011 .
[7] Ashish Negi,et al. Non Linear Dynamics of Ishikawa Iteration , 2010 .
[8] Earl F. Glynn. The evolution of the gingerbread man , 1991, Comput. Graph..
[9] ALFRED OLUFEMI BOSEDE,et al. STRONG CONVERGENCE RESULTS FOR THE JUNGCK-ISHIKAWA AND JUNGCK-MANN ITERATION PROCESSES , 2010 .
[10] Uday G. Gujar,et al. Analysis of z-plane fractal images from z <-- z alpha + c for alpha < 0 , 1993, Comput. Graph..
[11] Ken Shirriff,et al. An investigation of fractals generated by z --> 1/zn + c , 1993, Comput. Graph..
[12] J. Milnor,et al. Dynamics in One Complex Variable: Introductory Lectures , 2000 .
[13] Ashish Negi,et al. New Julia Sets of Ishikawa Iterates , 2010 .
[14] Peter H. Richter,et al. The Beauty of Fractals , 1988, 1988.
[15] Ashish Negi,et al. Complex Dynamics of Ishikawa Iterates for Non Integer Values , 2010 .
[16] Uday G. Gujar,et al. Fractal images from z <-- z alpha + c in the complex z-plane , 1992, Comput. Graph..
[17] G. Jungck,et al. Commuting Mappings and Fixed Points , 1976 .
[18] Dierk Schleicher,et al. Symmetries of fractals revisited , 1996 .
[19] S. Krantz. Fractal geometry , 1989 .
[20] A. G. Davis Philip,et al. Warped midgets in the Mandelbrot set , 1994, Comput. Graph..