Pseudojump operators. I. The r.e. case
暂无分享,去创建一个
[1] David P. Miller. High recursively enumerable degrees and the anti-cupping property , 1981 .
[2] John MacIntyre. Transfinite Extensions of Friedberg's Completeness Criterion , 1977, J. Symb. Log..
[3] Richard A. Shore,et al. On homogeneity and definability in the first-order theory of the Turing degrees , 1982, Journal of Symbolic Logic.
[4] A. Lachlan. A recursively enumerable degree which will not split over all lesser ones , 1976 .
[5] A. Lachlan. ON THE LATTICE OF RECURSIVELY ENUMERABLE SETS , 1968 .
[6] ON A PROBLEM OF G. E. SACKS , 1965 .
[7] A. H. Lachlan. Decomposition of recursively enumerable degrees , 1980 .
[8] G. Sacks. A minimal degree less than 0 , 1961 .
[9] Richard Friedberg,et al. A criterion for completeness of degrees of unsolvability , 1957, Journal of Symbolic Logic.
[10] Gerald E. Sacks. ON A THEOREM OF LACHLAN AND MARTIN , 1967 .
[11] Michael Stob,et al. Relative Recursive Enumerability , 1982 .
[12] Joseph R. Shoenfield,et al. Degrees of unsolvability , 1959, North-Holland mathematics studies.
[13] Robert I. Soare,et al. Minimal covers and arithmetical sets , 1970 .
[14] Donald A. Martin. On a Question of G. E. Sacks , 1966, J. Symb. Log..
[15] Alistair H. Lachlan,et al. Lower Bounds for Pairs of Recursively Enumerable Degrees , 1966 .
[16] A. Kechris,et al. A Basis Result for Σ^0_3 Sets of Reals with an Application to Minimal Covers , 1975 .
[17] Robert I. Soare,et al. The infinite injury priority method , 1976, Journal of Symbolic Logic.
[18] Robert W. Robinson,et al. Interpolation and Embedding in the Recursively Enumerable Degrees , 1971 .