Choice of a 2-D causal autoregressive texture model using information criteria

In the context of parametric modeling for image processing, we derive an estimation method for both the order and the parameters of 2-D causal autoregressive model with different geometries of support. Model parameters are estimated from a lattice representation, i.e. based on reflection coefficients. Lattice parameter estimation algorithms offer advantages compared to the Yule-Walker method: they do not require matrix inversion and their computation are robust and fast. For order selection, information criterion (IC) methods are the most commonly used. Therefore our order selection method is based on the combination of an IC and the prediction errors of models computed from the lattice parameter estimation algorithm. In this paper, we favour two consistent criteria compared to the nonconsistent Akaike criterion: the first criterion is a 2-D extension of Bayesian information criterion; the second criterion, noted φβ, extended here to the 2-D case, is a generalization drawn on Rissanen's works. Simulations are provided on synthetic and natural textures with quarter plane support and non-symmetrical half plane support. We validate our results on natural textures using the Kullback divergence. The results show the interest of the combination of 2-DFLRLS algorithm and φβ, criterion to characterize natural textures.

[1]  Joseph M. Francos,et al.  A unified texture model based on a 2-D Wold-like decomposition , 1993, IEEE Trans. Signal Process..

[2]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[3]  Hamparsum Bozdogan,et al.  Mixture-Model Cluster Analysis Using Model Selection Criteria and a New Informational Measure of Complexity , 1994 .

[4]  Stefanos Kollias,et al.  A fast technique for automatic segmentation and classification of textured images , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[5]  M. Basseville Information : entropies, divergences et moyennes , 1996 .

[6]  M. Basseville Distance measures for signal processing and pattern recognition , 1989 .

[7]  John W. Woods,et al.  Maximum-likelihood parameter estimation of discrete homogeneous random fields with mixed spectral distributions , 1996, IEEE Trans. Signal Process..

[8]  Rama Chellappa,et al.  Estimation and choice of neighbors in spatial-interaction models of images , 1983, IEEE Trans. Inf. Theory.

[9]  H. Akaike A new look at the statistical model identification , 1974 .

[10]  Olivier Alata,et al.  Texture characterization based on 2-D reflection coefficients , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[11]  Stéphanie Rouquette-Léveil,et al.  2-D high resolution spectral estimation based on multiple regions of support , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[12]  A.K. Jain,et al.  Advances in mathematical models for image processing , 1981, Proceedings of the IEEE.

[13]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[14]  Olivier Alata,et al.  Classification of rotated and scaled textures using HMHV spectrum estimation and the Fourier-Mellin transform , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[15]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[16]  A. H. Kayran,et al.  Optimum quarter-plane autoregressive modeling of 2-D fields using four-field lattice approach , 1997, IEEE Trans. Signal Process..

[17]  T. Marzetta Two-dimensional linear prediction: Autocorrelation arrays, minimum-phase prediction error filters, and reflection coefficient arrays , 1980 .

[18]  A. H. Kayran,et al.  Two-dimensional orthogonal lattice structures for autoregressive modeling of random fields , 1996, IEEE Trans. Signal Process..

[19]  R. Kashyap Inconsistency of the AIC rule for estimating the order of autoregressive models , 1980 .

[20]  Bjørn Olstad,et al.  Edge detection in noisy data using finite mixture distribution analysis , 1997, Pattern Recognit..

[21]  Piet M. T. Broersen,et al.  Finite sample criteria for autoregressive order selection , 2000, IEEE Trans. Signal Process..

[22]  Mohamed Najim,et al.  A two-dimensional fast lattice recursive least squares algorithm , 1996, IEEE Trans. Signal Process..

[23]  Marc Hallin,et al.  Order Selection, Stochastic Complexity and Kullback-Leibler Information , 1996 .

[24]  Rangasami L. Kashyap,et al.  A Model-Based Method for Rotation Invariant Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  M. Benidir Sufficient conditions for the stability of multidimensional recursive digital filters , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[26]  Charles A. Bouman,et al.  Multiple Resolution Segmentation of Textured Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Christian Olivier,et al.  Information criteria based edge detection , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[28]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[29]  Olivier Alata,et al.  2-D Wold decomposition: New parameter estimation approach to evanescent field spectral supports , 2000, 2000 10th European Signal Processing Conference.

[30]  Christian Olivier,et al.  Order selection of 2-D AR model using a lattice representation and information criteria for texture analysis , 2000, 2000 10th European Signal Processing Conference.

[31]  Asoke K. Nandi,et al.  A comparative study of AR order selection methods , 1994, Signal Process..

[32]  Surendra Ranganath,et al.  Two-dimensional linear prediction models-part I: Spectral factorization and realization , 1985, IEEE Trans. Acoust. Speech Signal Process..

[33]  Michael G. Strintzis,et al.  Tests of stability of multidimensional filters , 1977 .

[34]  Anil K. Jain,et al.  Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..

[35]  J. Rissanen Stochastic Complexity and Modeling , 1986 .

[36]  James D. Hamilton Time Series Analysis , 1994 .