Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input

This paper addresses the synchronization problem of drive-response chaotic gyros coupled with dead-zone nonlinear input. Using the sliding mode control technique, a novel control law is established which guarantees generalized projective synchronization even when the dead-zone nonlinearity is present. Numerical simulations are presented to verify that the synchronization can be achieved by using the proposed synchronization scheme.

[1]  Donghua Zhou,et al.  A new observer-based synchronization scheme for private communication , 2005 .

[2]  H. Yau Design of adaptive sliding mode controller for chaos synchronization with uncertainties , 2004 .

[3]  Hsun-Jung Cho,et al.  Chaos and control of discrete dynamic traffic model , 2005, J. Frankl. Inst..

[4]  Teh-Lu Liao,et al.  Adaptive synchronization of chaotic systems and its application to secure communications , 2000 .

[5]  Roland Schmitz,et al.  Use of chaotic dynamical systems in cryptography , 2001, J. Frankl. Inst..

[6]  Guanrong Chen,et al.  Effective chaotic orbit tracker: a prediction-based digital redesign approach , 2000 .

[7]  Daolin Xu,et al.  Control of the formation of projective synchronisation in lower-dimensional discrete-time systems , 2003 .

[8]  H.-K. Chen CHAOS AND CHAOS SYNCHRONIZATION OF A SYMMETRIC GYRO WITH LINEAR-PLUS-CUBIC DAMPING , 2002 .

[9]  X. Tong,et al.  Chaotic Motion of a Symmetric Gyro Subjected to a Harmonic Base Excitation , 2001 .

[10]  Xinghuo Yu,et al.  Stabilizing unstable periodic orbits of chaotic systems via an optimal principle , 2000, J. Frankl. Inst..

[11]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[12]  Vadim I. Utkin,et al.  Sliding Modes and their Application in Variable Structure Systems , 1978 .

[13]  R. V. Dooren,et al.  Comments on “Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping” , 2003 .

[14]  Shuzhi Sam Ge,et al.  Synchronization of Two uncertain Chaotic Systems via Adaptive backstepping , 2001, Int. J. Bifurc. Chaos.

[15]  K. Hsu Adaptive Variable Structure Control Design for Uncertain Time-Delayed Systems with Nonlinear Input , 1998 .

[16]  Juebang Yu,et al.  Chaos synchronization using single variable feedback based on backstepping method , 2004 .

[17]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[18]  Z. Ge,et al.  Bifurcations and chaos in a rate gyro with harmonic excitation , 1996 .

[19]  Wei Xu,et al.  Synchronization of two chaotic nonlinear gyros using active control , 2005 .

[20]  Ming-Jyi Jang,et al.  Sliding Mode Control of Chaos in the cubic Chua's Circuit System , 2002, Int. J. Bifurc. Chaos.

[21]  Leon O. Chua,et al.  Secure communication via chaotic parameter modulation , 1996 .

[22]  S. Bishop,et al.  Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems. , 2001, Chaos.