On Cooperative Wireless Network Secrecy

Given that wireless communication occurs in a shared and inherently broadcast medium, the transmissions are vulnerable to undesired eavesdropping. This occurs even when a point-to-point communication is sought, and hence a fundamental question is whether we can utilize the wireless channel properties to establish secrecy. In this paper we consider secret communication between two special nodes ("source" and "destination") in a wireless network with authenticated relays: the message communicated to the destination is to be kept information-theoretically (unconditionally) secret from any eavesdropper within a class. Since the transmissions are broadcast and interfere with each other, complex signal interactions occur. We develop cooperative schemes which utilize these interactions in wireless communication over networks with arbitrary topology, and give provable unconditional secrecy guarantees.

[1]  Panganamala Ramana Kumar,et al.  A network information theory for wireless communication: scaling laws and optimal operation , 2004, IEEE Transactions on Information Theory.

[2]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[3]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[4]  Jean-Pierre Hubaux,et al.  Security and Cooperation in Wireless Networks , 2007, ESAS.

[5]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[6]  Suhas Diggavi,et al.  On noise insertion strategies for wireless network secrecy , 2009, 2009 Information Theory and Applications Workshop.

[7]  Ayfer Özgür,et al.  Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks , 2006, IEEE Transactions on Information Theory.

[8]  R. Yeung,et al.  Secure network coding , 2002, Proceedings IEEE International Symposium on Information Theory,.

[9]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[10]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[11]  Suhas N. Diggavi,et al.  A Deterministic Approach to Wireless Relay Networks , 2007, ArXiv.

[12]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[13]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[14]  Suhas N. Diggavi,et al.  Wireless Network Information Flow , 2007, ArXiv.

[15]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[16]  Suhas N. Diggavi,et al.  Approximate capacity of Gaussian relay networks , 2008, 2008 IEEE International Symposium on Information Theory.

[17]  Yasutada Oohama Relay Channels with Confidential Messages , 2006, ArXiv.

[18]  Hesham El Gamal,et al.  Cooperative Secrecy: The Relay-Eavesdropper Channel , 2007, 2007 IEEE International Symposium on Information Theory.

[19]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[20]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[21]  Larry Carter,et al.  New Hash Functions and Their Use in Authentication and Set Equality , 1981, J. Comput. Syst. Sci..

[22]  Yasutada Oohama,et al.  Coding for relay channels with confidential messages , 2001, Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494).