High endurance strategies for hafnium oxide based ferroelectric field effect transistor

In this paper potential strategies to overcome the endurance limitations of hafnium oxide based ferroelectric field effect transistors are discussed. These pathways are based on the assumption that the high interfacial field stress and the accompanying charge injection in the metal-ferroelectric-insulator-semiconductor gate stack are the dominant degradation mechanisms during program and erase operation. Three different approaches capable of lowering or eliminating the interfacial field stress are being assessed - lowering the electrical field stress induced by polarization reversal; utilizing low voltage sub-loop operation; altering the capacitive divider within the gate stack.

[1]  Y. Morita,et al.  Preparation of epitaxial HfO2 film (EOT=0.5 nm) on Si substrate using atomic-layer deposition of amorphous film and rapid thermal crystallization (RTC) in an abrupt temperature gradient , 2010, 2010 International Electron Devices Meeting.

[2]  H. Funakubo,et al.  Growth of epitaxial orthorhombic YO1.5-substituted HfO2 thin film , 2015 .

[3]  Albert Chin,et al.  Low-Leakage-Current DRAM-Like Memory Using a One-Transistor Ferroelectric MOSFET With a Hf-Based Gate Dielectric , 2014, IEEE Electron Device Letters.

[4]  H. Funakubo,et al.  Orientation control and domain structure analysis of {100}-oriented epitaxial ferroelectric orthorhombic HfO2-based thin films , 2016 .

[5]  Sergei V. Kalinin,et al.  Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories , 2013, 2013 IEEE International Electron Devices Meeting.

[6]  J. Robertson High dielectric constant gate oxides for metal oxide Si transistors , 2006 .

[7]  T. Mikolajick,et al.  Ferroelectric Hafnium Oxide A Game Changer to FRAM? , 2014, 2014 14th Annual Non-Volatile Memory Technology Symposium (NVMTS).

[8]  S. Slesazeck,et al.  Influence of nitrogen trap states on the electronic properties of high-k metal gate transistors , 2014, 2014 IEEE International Integrated Reliability Workshop Final Report (IIRW).

[9]  D. Schlom,et al.  Thermodynamic stability of binary oxides in contact With silicon , 1996 .

[10]  Tengyu Ma,et al.  Why is nonvolatile ferroelectric memory field-effect transistor still elusive? , 2002, IEEE Electron Device Letters.

[11]  Jacob L. Jones,et al.  Ferroelectric Si-Doped HfO2 Device Properties on Highly Doped Germanium , 2015, IEEE Electron Device Letters.

[12]  Meishoku Masahara,et al.  Two-step annealing effects on ultrathin EOT higher-k (k = 40) ALD-HfO2 gate stacks , 2012, 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[13]  Paul J. McWhorter,et al.  Physics of the ferroelectric nonvolatile memory field effect transistor , 1992 .

[14]  Tom Herrmann,et al.  Performance investigation and optimization of Si:HfO2 FeFETs on a 28 nm bulk technology , 2013, 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy (ISAF/PFM).

[15]  Sung-Min Yoon,et al.  Adaptive-Learning Synaptic Devices Using Ferroelectric-Gate Field-Effect Transistors for Neuromorphic Applications , 2020, Topics in Applied Physics.

[16]  R. Hoffmann,et al.  Nanosecond Polarization Switching and Long Retention in a Novel MFIS-FET Based on Ferroelectric $\hbox{HfO}_{2}$ , 2012, IEEE Electron Device Letters.

[17]  Chun-Yen Chang,et al.  Low power 1T DRAM/NVM versatile memory featuring steep sub-60-mV/decade operation, fast 20-ns speed, and robust 85°C-extrapolated 1016 endurance , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).

[18]  G. Pourtois,et al.  Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: A first principles insight , 2014 .

[19]  S. Flachowsky,et al.  Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[20]  Eiichi Murakami,et al.  Effect of nitrogen at SiO2/Si interface on reliability issues—negative-bias-temperature instability and Fowler–Nordheim-stress degradation , 2002 .

[21]  S. Slesazeck,et al.  Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories , 2014, 2014 IEEE International Reliability Physics Symposium.

[22]  Shogo Nakamura,et al.  Solid state epitaxy of (Hf,Zr)O2 thin films with orthorhombic phase , 2016 .

[23]  J. Muller,et al.  Ferroelectric deep trench capacitors based on Al:HfO2 for 3D nonvolatile memory applications , 2014, 2014 IEEE 6th International Memory Workshop (IMW).

[24]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[25]  Hiroshi Ishiwara,et al.  Low Voltage Operation of Nonvolatile Metal-Ferroelectric-Metal-Insulator-Semiconductor (MFMIS)-Field-Effect-Transistors (FETs) Using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si Structures , 2001 .