State Complexes for Metamorphic Robots

A metamorphic robotic system is an aggregate of homogeneous robot units which can individually and selectively locomote in such a way as to change the global shape of the system. We introduce a mathematical framework for defining and analyzing general metamorphic robots. With this formal structure, combined with ideas from geometric group theory, we define a new type of configuration space for metamorphic robots—the state complex—which is especially adapted to parallelization. We present an algorithm for optimizing an input reconfiguration sequence with respect to elapsed time. A universal geometric property of state complexes—non-positive curvature—is the key to proving convergence to the globally timeoptimal solution obtainable from the initial path.

[1]  Nancy M. Amato,et al.  Concurrent metamorphosis of hexagonal robot chains into simple connected configurations , 2002, IEEE Trans. Robotics Autom..

[2]  Eiichi Yoshida,et al.  Distributed formation control for a modular mechanical system , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[3]  A. O. Houcine On hyperbolic groups , 2006 .

[4]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[5]  Graham A. Niblo,et al.  The geometry of cube complexes and the complexity of their fundamental groups , 1998 .

[6]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[7]  Mark H. Yim,et al.  Rhombic dodecahedron shape for self-assembling robots , 1997 .

[8]  Gregory S. Chirikjian,et al.  Kinematics of a metamorphic robotic system , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[9]  Nancy M. Amato,et al.  Distributed reconfiguration of metamorphic robot chains , 2004, PODC '00.

[10]  Leonidas J. Guibas Controlled Module Density Helps Reconfiguration Planning , 2000 .

[11]  Craig D. McGray,et al.  Self-reconfigurable molecule robots as 3D metamorphic robots , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[12]  Marsette Vona,et al.  Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules , 2001, Auton. Robots.

[13]  Ying Zhang,et al.  Distributed Control for 3D Metamorphosis , 2001, Auton. Robots.

[14]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[15]  Eiichi Yoshida,et al.  Self-assembly and self-repair method for a distributed mechanical system , 1999, IEEE Trans. Robotics Autom..

[16]  Eiichi Yoshida,et al.  M-TRAN: self-reconfigurable modular robotic system , 2002 .

[17]  Nancy M. Amato,et al.  Choosing good paths for fast distributed reconfiguration of hexagonal metamorphic robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[18]  Aaron Abrams,et al.  Configuration Spaces of Colored Graphs , 2002 .

[19]  Robert Ghrist,et al.  Finding Topology in a Factory: Configuration Spaces , 2002, Am. Math. Mon..

[20]  Henrik Gordon Petersen,et al.  Distributed motion planning for modular robots , 2001, SPIE Optics East.

[21]  Vaughan R. Pratt,et al.  Modeling concurrency with geometry , 1991, POPL '91.

[22]  Robert Ghrist Configuration spaces and braid groups on graphs in robotics , 1999 .

[23]  H. Kurokawa,et al.  Self-assembling machine , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[24]  Daniel E. Koditschek,et al.  Safe Cooperative Robot Dynamics on Graphs , 2000, SIAM J. Control. Optim..

[25]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[26]  Wei-Min Shen,et al.  CONRO: Towards Deployable Robots with Inter-Robots Metamorphic Capabilities , 2000, Auton. Robots.

[27]  G. Chirikjian,et al.  Evaluating efficiency of self-reconfiguration in a class of modular robots , 1996 .

[28]  Xiao-Song Lin,et al.  Configuration spaces and braid groups on graphs in robotics , 2001 .

[29]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule: design and control algorithms , 1998 .

[30]  Zack J. Butler,et al.  Distributed motion planning for modular robots with unit-compressible modules , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[31]  Gregory S. Chirikjian,et al.  Bounds for self-reconfiguration of metamorphic robots , 1996, Proceedings of IEEE International Conference on Robotics and Automation.