Numerische Mathematik Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L ∞-coefficients

This article deals with the existence of blockwise low-rank approximants — so-called H-matrices — to inverses of FEM matrices in the case of uniformly elliptic operators with L∞-coefficients. Unlike operators arising from boundary element methods for which the H-matrix theory has been extensively developed, the inverses of these operators do not benefit from the smoothness of the kernel function. However, it will be shown that the corresponding Green functions can be approximated by degenerate functions giving rise to the existence of blockwise low-rank approximants of FEM inverses. Numerical examples confirm the correctness of our estimates. As a side-product we analyse the H-matrix property of the inverse of the FE mass matrix.

[1]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[2]  G. Meinardus Approximation of Functions: Theory and Numerical Methods , 1967 .

[3]  Michael Grüter,et al.  The Green function for uniformly elliptic equations , 1982 .

[4]  William F. Moss,et al.  Decay rates for inverses of band matrices , 1984 .

[5]  L. Evans MULTIPLE INTEGRALS IN THE CALCULUS OF VARIATIONS AND NONLINEAR ELLIPTIC SYSTEMS , 1984 .

[6]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[7]  Wolfgang Hackbusch,et al.  Theorie und Numerik elliptischer Differentialgleichungen , 1986, Teubner Studienbücher.

[8]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[9]  W. Hackbusch Iterative Lösung großer schwachbesetzter Gleichungssysteme , 1991 .

[10]  W. Hackbusch Integral Equations: Theory and Numerical Treatment , 1995 .

[11]  S. Müller,et al.  Estimates for Green's matrices of elliptic systems byLp theory , 1995 .

[12]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[13]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[14]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[15]  W. Hackbusch,et al.  A Sparse ℋ-Matrix Arithmetic. , 2000, Computing.

[16]  Wolfgang Hackbusch,et al.  Adaptive refinement and clustering of H-matrices , 2001 .

[17]  Mario Bebendorf,et al.  Effiziente numerische Lösung von Randintegralgleichungen unter Verwendung von Niedrigrang-Matrizen , 2001 .

[18]  Ivan P. Gavrilyuk,et al.  $\mathcal{H}$-Matrix approximation for the operator exponential with applications , 2002, Numerische Mathematik.

[19]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[20]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .