Extracting Work Optimally with Imprecise Measurements

Measurement and feedback allows for an external agent to extract work from a system in contact with a single thermal bath. The maximum amount of work that can be extracted in a single measurement and the corresponding feedback loop is given by the information that is acquired via the measurement, a result that manifests the close relation between information theory and stochastic thermodynamics. In this paper, we show how to reversibly confine a Brownian particle in an optical tweezer potential and then extract the corresponding increase of the free energy as work. By repeatedly tracking the position of the particle and modifying the potential accordingly, we can extract work optimally, even with a high degree of inaccuracy in the measurements.

[1]  Udo Seifert,et al.  Efficiency of a Brownian information machine , 2012, 1203.0184.

[2]  Jordan M. Horowitz,et al.  Thermodynamic reversibility in feedback processes , 2011, 1104.0332.

[3]  D. Petrov,et al.  Brownian Carnot engine , 2014, Nature Physics.

[4]  Jordan M. Horowitz,et al.  Reversible feedback confinement , 2016, 1609.06461.

[5]  Clemens Bechinger,et al.  Realization of a micrometre-sized stochastic heat engine , 2011, Nature Physics.

[6]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[7]  Jordan M. Horowitz,et al.  Designing optimal discrete-feedback thermodynamic engines , 2011, 1110.6808.

[8]  Dmitri Petrov,et al.  Adiabatic processes realized with a trapped Brownian particle. , 2014, Physical review letters.

[9]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[10]  U. Seifert,et al.  Optimal finite-time processes in stochastic thermodynamics. , 2007, Physical review letters.

[11]  M. N. Bera,et al.  Thermodynamics from Information , 2018, 1805.10282.

[12]  Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. , 2005, Physical review letters.

[13]  Adam E Cohen,et al.  Control of nanoparticles with arbitrary two-dimensional force fields. , 2005, Physical review letters.

[14]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[15]  Riccardo Mannella,et al.  A Gentle Introduction to the Integration of Stochastic Differential Equations , 2000 .

[16]  J. Parrondo,et al.  Dissipation: the phase-space perspective. , 2007, Physical review letters.

[17]  Francisco J Cao,et al.  Feedback control in a collective flashing ratchet. , 2004, Physical review letters.

[18]  Christian Van Den Broeck,et al.  Stochastic thermodynamics: A brief introduction , 2013 .

[19]  H. Touchette,et al.  Information and flux in a feedback controlled Brownian ratchet , 2009 .

[20]  Masahito Ueda,et al.  Nonequilibrium thermodynamics of feedback control. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Jordan M. Horowitz,et al.  Optimizing Non-ergodic Feedback Engines , 2013, 1305.6281.

[22]  U. Seifert,et al.  Extracting work from a single heat bath through feedback , 2011, 1102.3826.

[23]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.