Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins

[1]  B. Cullen,et al.  Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins. , 1995, Virology.

[2]  G Rautmann,et al.  Evidence that HIV‐1 Rev directly promotes the nuclear export of unspliced RNA. , 1994, The EMBO journal.

[3]  M. Rosbash,et al.  A functional interaction between Rev and yeast pre‐mRNA is related to splicing complex formation. , 1994, The EMBO journal.

[4]  B. Peterlin,et al.  Cellular protein modulates effects of human immunodeficiency virus type 1 Rev , 1994, Journal of virology.

[5]  T. Hope,et al.  Posttranscriptional effector domains in the Rev proteins of feline immunodeficiency virus and equine infectious anemia virus , 1994, Journal of virology.

[6]  K. Jeang,et al.  A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[7]  G. Blobel,et al.  The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Hauber,et al.  Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans- activation , 1993, The Journal of cell biology.

[9]  T. Liang,et al.  A novel hepatitis B virus (HBV) genetic element with Rev response element-like properties that is essential for expression of HBV gene products , 1993, Molecular and cellular biology.

[10]  B. Cullen,et al.  Identification of the activation domain of equine infectious anemia virus rev , 1993, Journal of virology.

[11]  S. Elledge,et al.  The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases , 1993, Cell.

[12]  W. Greene,et al.  Dominant negative mutants of human T-cell leukemia virus type I Rex and human immunodeficiency virus type 1 Rev fail to multimerize in vivo , 1993, Journal of virology.

[13]  J. Karn,et al.  Recognition of the high affinity binding site in rev-response element RNA by the human immunodeficiency virus type-1 rev protein. , 1992, Nucleic acids research.

[14]  D. McDonald,et al.  Posttranscriptional regulation by the human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex proteins through a heterologous RNA binding site , 1992, Journal of virology.

[15]  M. Malim,et al.  The VP16 transcription activation domain is functional when targeted to a promoter-proximal RNA sequence. , 1992, Genes & development.

[16]  B. Cullen,et al.  Mechanism of action of regulatory proteins encoded by complex retroviruses , 1992, Microbiological reviews.

[17]  J. Hauber,et al.  Definition of the human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex protein activation domain by functional exchange , 1992, Journal of virology.

[18]  P. Sharp,et al.  Specific binding of a basic peptide from HIV‐1 Rev. , 1992, The EMBO journal.

[19]  M. Malim,et al.  Identification of a high-affinity RNA-binding site for the human immunodeficiency virus type 1 Rev protein , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  D. McDonald,et al.  Effector domains of human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex are functionally interchangeable and share an essential peptide motif , 1991, Journal of virology.

[21]  Michael R. Green,et al.  HIV-1 rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA , 1991, Cell.

[22]  M. Malim,et al.  Mutational definition of the human immunodeficiency virus type 1 Rev activation domain , 1991, Journal of virology.

[23]  M. Malim,et al.  Conserved functional organization of the human immunodeficiency virus type 1 and visna virus Rev proteins , 1991, Journal of virology.

[24]  M. Malim,et al.  HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: Implications for HIV-1 latency , 1991, Cell.

[25]  M. Rosenberg,et al.  Rev-dependent expression of human immunodeficiency virus type 1 gp160 in Drosophila melanogaster cells , 1990, Molecular and cellular biology.

[26]  G. Chinnadurai,et al.  Mutants in a conserved region near the carboxy-terminus of HIV-1 Rev identify functionally important residues and exhibit a dominant negative phenotype. , 1990, Virology.

[27]  Bryan R. Cullen,et al.  HIV-1 structural gene expression requires binding of the rev trans-activator to its RNA target sequence , 1990, Cell.

[28]  C. Rosen,et al.  Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function , 1990, Journal of virology.

[29]  K. Cook,et al.  Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro , 1989, Nature.

[30]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[31]  M. Malim,et al.  Functional dissection of the HIV-1 Rev trans-activator—Derivation of a trans-dominant repressor of Rev function , 1989, Cell.

[32]  M. Emerman,et al.  The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization , 1989, Cell.

[33]  S. Le,et al.  The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA , 1989, Nature.

[34]  T. Copeland,et al.  rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Maki,et al.  Sequence requirements for nucleolar localization of human T cell leukemia virus type I pX protein, which regulates viral RNA processing , 1988, Cell.

[36]  M. Malim,et al.  Functional replacement of the HIV-1 rev protein by the HTLV-1 rex protein , 1988, Nature.

[37]  B. Cullen,et al.  Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. , 1988, Gene.

[38]  Mark Ptashne,et al.  Mutants of GAL4 protein altered in an activation function , 1987, Cell.

[39]  M. Feinberg,et al.  HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA , 1986, Cell.

[40]  J. Sodroski,et al.  A second post-transcriptional trans-activator gene required for HTLV-III replication , 1986, Nature.