Mechanisms of scaling in pattern formation

Many organisms and their constituent tissues and organs vary substantially in size but differ little in morphology; they appear to be scaled versions of a common template or pattern. Such scaling involves adjusting the intrinsic scale of spatial patterns of gene expression that are set up during development to the size of the system. Identifying the mechanisms that regulate scaling of patterns at the tissue, organ and organism level during development is a longstanding challenge in biology, but recent molecular-level data and mathematical modeling have shed light on scaling mechanisms in several systems, including Drosophila and Xenopus. Here, we investigate the underlying principles needed for understanding the mechanisms that can produce scale invariance in spatial pattern formation and discuss examples of systems that scale during development.

[1]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[2]  L. E. Scriven,et al.  Interactions of reaction and diffusion in open systems , 1969 .

[3]  L E Scriven,et al.  Instability and dynamic pattern in cellular networks. , 1971, Journal of theoretical biology.

[4]  H G Othmer,et al.  Scale-invariance in reaction-diffusion models of spatial pattern formation. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Cooke,et al.  Scale of body pattern adjusts to available cell number in amphibian embryos , 1981, Nature.

[6]  H. Kageura,et al.  Pattern regulation in isolated halves and blastomeres of early Xenopus laevis. , 1983, Journal of embryology and experimental morphology.

[7]  H. Othmer A continuum model for coupled cells , 1983, Journal of mathematical biology.

[8]  B. Alberts,et al.  Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. , 1983, Journal of cell science.

[9]  H. Kageura,et al.  Pattern regulation in defect embryos of Xenopus laevis. , 1984, Developmental biology.

[10]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[11]  Y. Sasai,et al.  Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes , 1994, Cell.

[12]  S. Kondo,et al.  A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus , 1995, Nature.

[13]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[14]  Y. Sasai,et al.  Dorsoventral Patterning in Xenopus: Inhibition of Ventral Signals by Direct Binding of Chordin to BMP-4 , 1996, Cell.

[15]  Leslie Dale,et al.  Cleavage of Chordin by Xolloid Metalloprotease Suggests a Role for Proteolytic Processing in the Regulation of Spemann Organizer Activity , 1997, Cell.

[16]  C. Niehrs,et al.  Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. , 1999, Nature.

[17]  P K Maini,et al.  Stripe formation in juvenile Pomacanthus explained by a generalized turing mechanism with chemotaxis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  E. Robertis,et al.  The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling , 2000, Nature.

[19]  S. Leibler,et al.  Establishment of developmental precision and proportions in the early Drosophila embryo , 2002, Nature.

[20]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[21]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations II: Chemotaxis Equations , 2002, SIAM J. Appl. Math..

[22]  P. Pantazis,et al.  Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model , 2004, Development.

[23]  David H. Sharp,et al.  Dynamic control of positional information in the early Drosophila embryo , 2004, Nature.

[24]  W. Bialek,et al.  Diffusion and scaling during early embryonic pattern formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  H. Spemann,et al.  über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren , 1924, Archiv für mikroskopische Anatomie und Entwicklungsmechanik.

[26]  Yu-Chiun Wang,et al.  Spatial bistability of Dpp–receptor interactions during Drosophila dorsal–ventral patterning , 2005, Nature.

[27]  E. Robertis,et al.  Regulation of ADMP and BMP2/4/7 at Opposite Embryonic Poles Generates a Self-Regulating Morphogenetic Field , 2005, Cell.

[28]  P. Pantazis,et al.  Robust formation of morphogen gradients. , 2004, Physical review letters.

[29]  Osamu Shimmi,et al.  Facilitated Transport of a Dpp/Scw Heterodimer by Sog/Tsg Leads to Robust Patterning of the Drosophila Blastoderm Embryo , 2005, Cell.

[30]  E. Robertis,et al.  Embryonic Dorsal-Ventral Signaling: Secreted Frizzled-Related Proteins as Inhibitors of Tolloid Proteinases , 2006, Cell.

[31]  E. D. Robertis,et al.  Spemann's organizer and self-regulation in amphibian embryos , 2006, Nature Reviews Molecular Cell Biology.

[32]  W. Rappel,et al.  Embryonic pattern scaling achieved by oppositely directed morphogen gradients , 2006, Physical biology.

[33]  S. Bergmann,et al.  Pre-Steady-State Decoding of the Bicoid Morphogen Gradient , 2007, PLoS biology.

[34]  M. Kreitman,et al.  Canalization of segmentation and its evolution in Drosophila , 2007, Proceedings of the National Academy of Sciences.

[35]  Stanislav Y Shvartsman,et al.  Modeling the bicoid gradient: diffusion and reversible nuclear trapping of a stable protein. , 2007, Developmental biology.

[36]  Arthur D Lander,et al.  Morpheus Unbound: Reimagining the Morphogen Gradient , 2007, Cell.

[37]  F. Bruggeman,et al.  Introduction to systems biology. , 2007, EXS.

[38]  Douglas J Emlen,et al.  Size and shape: the developmental regulation of static allometry in insects , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[39]  W. Bialek,et al.  Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient , 2007, Cell.

[40]  E. D. De Robertis,et al.  Integrating positional information at the level of Smad1/5/8. , 2008, Current opinion in genetics & development.

[41]  Y. Sasai,et al.  Robust Stability of the Embryonic Axial Pattern Requires a Secreted Scaffold for Chordin Degradation , 2008, Cell.

[42]  N. Barkai,et al.  Scaling of the BMP activation gradient in Xenopus embryos , 2008, Nature.

[43]  John Tower,et al.  Adult-specific over-expression of the Drosophila genes magu and hebe increases life span and modulates late-age female fecundity , 2009, Molecular Genetics and Genomics.

[44]  S. Shvartsman,et al.  Nuclear Trapping Shapes the Terminal Gradient in the Drosophila Embryo , 2008, Current Biology.

[45]  A. Kicheva,et al.  Precision of the Dpp gradient , 2008, Development.

[46]  Paul A. Bates,et al.  Mathematical modeling identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting system , 2008, Proceedings of the National Academy of Sciences.

[47]  Thomas Gregor,et al.  Shape and function of the Bicoid morphogen gradient in dipteran species with different sized embryos. , 2008, Developmental biology.

[48]  Justin Crocker,et al.  Evolution Acts on Enhancer Organization to Fine-Tune Gradient Threshold Readouts , 2008, PLoS biology.

[49]  David M. Umulis,et al.  Robustness of embryonic spatial patterning in Drosophila melanogaster. , 2008, Current topics in developmental biology.

[50]  A. Brivanlou,et al.  Scaling of BMP gradients in Xenopus embryos , 2009, Nature.

[51]  David M. Umulis,et al.  Analysis of dynamic morphogen scale invariance , 2009, Journal of The Royal Society Interface.

[52]  J. Plouhinec,et al.  Systems biology of the self-regulating morphogenetic gradient of the Xenopus gastrula. , 2009, Cold Spring Harbor perspectives in biology.

[53]  James C. Smith Forming and interpreting gradients in the early Xenopus embryo. , 2009, Cold Spring Harbor perspectives in biology.

[54]  D. Rubenstein,et al.  Is the endangered Grevy's zebra threatened by hybridization? , 2009 .

[55]  David M. Umulis,et al.  The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology. , 2009, Mathematical modelling of natural phenomena.

[56]  David H. Sharp,et al.  Canalization of Gene Expression and Domain Shifts in the Drosophila Blastoderm by Dynamical Attractors , 2009, PLoS Comput. Biol..

[57]  David M. Umulis,et al.  The extracellular regulation of bone morphogenetic protein signaling , 2009, Development.

[58]  Wouter-Jan Rappel,et al.  Determining the scale of the Bicoid morphogen gradient , 2009, Proceedings of the National Academy of Sciences.

[59]  Naama Barkai,et al.  Scaling of morphogen gradients by an expansion-repression integral feedback control , 2010, Proceedings of the National Academy of Sciences.

[60]  C. Mizutani,et al.  Mechanisms and Evolution of Dorsal–Ventral Patterning , 2010 .

[61]  David M. Umulis,et al.  Organism-scale modeling of early Drosophila patterning via bone morphogenetic proteins. , 2010, Developmental cell.

[62]  Johannes Jaeger,et al.  Cellular and Molecular Life Sciences REVIEW The gap gene network , 2022 .

[63]  Markus Affolter,et al.  Control of Dpp morphogen signalling by a secreted feedback regulator , 2010, Nature Cell Biology.

[64]  Mathieu Coppey,et al.  Modelling the Bicoid gradient , 2010, Development.

[65]  E. Wieschaus,et al.  The Bicoid gradient is shaped independently of nuclei , 2010, Development.

[66]  S. Bergmann,et al.  Dpp Signaling Activity Requires Pentagone to Scale with Tissue Size in the Growing Drosophila Wing Imaginal Disc , 2011, PLoS biology.

[67]  M. Kreitman,et al.  Scaling of the Bicoid morphogen gradient by a volume-dependent production rate , 2011, Development.

[68]  Sougata Roy,et al.  Specificity of Drosophila Cytonemes for Distinct Signaling Pathways , 2011, Science.

[69]  A. Kicheva,et al.  Dynamics of Dpp Signaling and Proliferation Control , 2011, Science.

[70]  C. L. Luengo Hendriks,et al.  ARTIFICIAL SELECTION ON EGG SIZE PERTURBS EARLY PATTERN FORMATION IN DROSOPHILA MELANOGASTER , 2011, Evolution; international journal of organic evolution.

[71]  M. Gonzalez-Gaitan,et al.  The missing link: implementation of morphogenetic growth control on the cellular and molecular level. , 2011, Current opinion in genetics & development.

[72]  J. Plouhinec,et al.  Systems control of BMP morphogen flow in vertebrate embryos. , 2011, Current opinion in genetics & development.

[73]  Naama Barkai,et al.  Expansion-Repression Mechanism for Scaling the Dpp Activation Gradient in Drosophila Wing Imaginal Discs , 2011, Current Biology.

[74]  Charless C. Fowlkes,et al.  Analysis of Gap Gene Regulation in a 3D Organism-Scale Model of the Drosophila melanogaster Embryo , 2011, PloS one.

[75]  Eric F. Wieschaus,et al.  The Formation of the Bicoid Morphogen Gradient Requires Protein Movement from Anteriorly Localized mRNA , 2011, PLoS biology.

[76]  Hye-Won Kang,et al.  The effect of the signalling scheme on the robustness of pattern formation in development , 2012, Interface Focus.

[77]  Delong Zhang,et al.  Label-free imaging of lipid-droplet intracellular motion in early Drosophila embryos using femtosecond-stimulated Raman loss microscopy. , 2012, Biophysical journal.

[78]  David M. Umulis,et al.  Scale invariance of morphogen-mediated patterning by flux optimization , 2012, 2012 5th International Conference on BioMedical Engineering and Informatics.

[79]  Michael Brand,et al.  Morphogen transport , 2013, Development.

[80]  J. S. Chahda,et al.  Variation in the Dorsal Gradient Distribution Is a Source for Modified Scaling of Germ Layers in Drosophila , 2013, Current Biology.

[81]  Tatsuo Shibata,et al.  Scaling of Dorsal-Ventral Patterning by Embryo Size-Dependent Degradation of Spemann’s Organizer Signals , 2013, Cell.