Option Pricing with Levy Process

In this paper, we assume that log returns can be modelled by a Levy process. We give explicit formulae for option prices by means of the Fourier transform. We explain how to infer the characteristics of the Levy process from option prices. This enables us to generate an implicit volatility surface implied by market data. This model is of particular interest since it extends the seminal Black Scholes [1973] model consistently with volatility smile.

[1]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[2]  M. Rubinstein. Implied Binomial Trees , 1994 .

[3]  Stanley J. Kon Models of Stock Returns—A Comparison , 1984 .

[4]  Kaushik I. Amin Jump Diffusion Option Valuation in Discrete Time , 1993 .

[5]  D. Madan,et al.  Estimation of risk-neutral and statistical densities by Hermite polynomial approximation: with an application to Eurodollar futures options , 1996 .

[6]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[7]  Eric Benhamou,et al.  Fast Fourier Transform for Discrete Asian Options , 2000 .

[8]  Ernst Eberlein,et al.  On the range of options prices , 1997, Finance Stochastics.

[9]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[10]  R. Jarrow,et al.  Jump Risks and the Intertemporal Capital Asset Pricing Model , 1984 .

[11]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[12]  R. Jarrow,et al.  APPROXIMATE OPTION VALUATION FOR ARBITRARY STOCHASTIC PROCESSES , 1982 .

[13]  B. Dumas,et al.  Implied volatility functions: empirical tests , 1996, IEEE Conference on Computational Intelligence for Financial Engineering & Economics.

[14]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .

[15]  James B. Wiggins Option values under stochastic volatility: Theory and empirical estimates , 1987 .

[16]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[17]  David S. Bates The Crash of ʼ87: Was It Expected? The Evidence from Options Markets , 1991 .

[18]  Knut K. Aase,et al.  A Jump/Diffusion Consumption-Based Capital Asset Pricing Model and the Equity Premium Puzzle , 1993 .

[19]  H. Thompson,et al.  Jump‐Diffusion Processes and the Term Structure of Interest Rates , 1988 .

[20]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[21]  S. Turnbull,et al.  Pricing foreign currency options with stochastic volatility , 1990 .

[22]  Kaushik I. Amin,et al.  Option Valuation with Systematic Stochastic Volatility , 1993 .

[23]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[24]  Philippe Jorion On Jump Processes in the Foreign Exchange and Stock Markets , 1988 .

[25]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[26]  Rama Cont,et al.  Service de Physique de l’État Condensé, Centre d’études de Saclay , 1997 .

[27]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .