Introduction to a Quantum Theory over a Galois Field

We consider a quantum theory based on a Galois field. In this approach infinities cannot exist, the cosmological constant problem does not arise, and one irreducible representation (IR) of the symmetry algebra splits into independent IRs describing a particle an its antiparticle only in the approximation when de Sitter energies are much less than the characteristic of the field. As a consequence, the very notions of particles and antiparticles are only approximate and such additive quantum numbers as the electric, baryon and lepton charges are conserved only in this approximation. There can be no neutral elementary particles and the spin-statistics theorem can be treated simply as a requirement that standard quantum theory should be based on complex numbers.

[1]  Joe Rosen,et al.  Symmetry Rules: How Science and Nature Are Founded on Symmetry , 2008 .

[2]  W. Heidenreich All linear unitary irreducible representations of De Sitter supersymmetry with positive energy , 1982 .

[3]  Supersymmetry in Quantum Theory Over a Galois Field , 2002, hep-th/0209229.

[4]  B. Bakker Forms of Relativistic Dynamics , 2001 .

[5]  Louis de Forcrand,et al.  Higher Arithmetic , 1898, Nature.

[6]  Steven Weinberg,et al.  What is Quantum Field Theory, and What Did We Think It Is? , 1996, hep-th/9702027.

[7]  D. Rickles Who's Afraid of Background Independence? , 2008 .

[8]  Apostolos Vourdas,et al.  Quantum systems with finite Hilbert space , 2004 .

[9]  H. R. Coish ELEMENTARY PARTICLES IN A FINITE WORLD GEOMETRY , 1959 .

[10]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[11]  Y. Nambu Field Theory of Galois' Fields , 1995 .

[12]  E. Wigner,et al.  Representations of the Galilei group , 1952 .

[13]  Domenico Giulini,et al.  Superselection Rules , 2007, Compendium of Quantum Physics.

[14]  I. Volovich Number theory as the ultimate physical theory , 1987 .

[15]  F. Lev Finiteness of physics and its possible consequences , 1993 .

[16]  C. Frønsdal The Dirac Supermultiplet , 1981 .

[17]  Gregor Wentzel,et al.  Quantum theory of fields , 1949 .

[18]  L. Infeld Quantum Theory of Fields , 1949, Nature.

[19]  Bock,et al.  A Measurement of Omega from the North American Test Flight of Boomerang. , 1999, The Astrophysical journal.

[20]  Could only fermions be elementary , 2002, hep-th/0210144.

[21]  E. Witten Quantum Gravity In De Sitter Space , 2001, hep-th/0106109.

[22]  S. V. Kozyrev,et al.  On p-adic mathematical physics , 2006, 0904.4205.

[23]  S. Weinberg Effective Field Theory, Past and Future , 2009, 0908.1964.

[24]  D. Rickles Chapter 7 Who's Afraid of Background Independence? , 2008 .

[25]  Felix M. Lev Why is quantum physics based on complex numbers? , 2006, Finite Fields Their Appl..

[26]  I. Shapiro Weak interactions in the theory of elementary particles with finite space , 1960 .

[27]  D. Rickles Time and Structure in Canonical Gravity , 2004 .

[28]  F. Lev Modular representations as a possible basis of finite physics , 1989 .

[29]  A. Vourdas,et al.  FAST TRACK COMMUNICATION: Symplectic transformations and quantum tomography in finite quantum systems , 2010 .

[30]  R. Shaw,et al.  Unitary representations of the inhomogeneous Lorentz group , 1964 .

[31]  Anatolii A. Logunov,et al.  General Principles of Quantum Field Theory , 1990 .

[32]  Quantum Theory on a Galois Field , 2004, hep-th/0403231.

[33]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[34]  Massless Elementary Particles in a Quantum Theory over a Galois Field , 2002, hep-th/0207192.

[35]  H. Biritz,et al.  On localized states for elementary systems , 1971 .

[36]  Paul Adrien Maurice Dirac,et al.  A Remarkable Representation of the 3 + 2 de Sitter Group , 1963 .

[37]  Douglas Quadling,et al.  The Higher Arithmetic , 1954 .

[38]  N. T. Evans DISCRETE SERIES FOR THE UNIVERSAL COVERING GROUP OF THE 3 + 2 DE SITTER GROUP. , 1967 .

[39]  M. Flato,et al.  One massless particle equals two Dirac singletons , 1978 .

[40]  M. Planat HUYGHENS, BOHR, RIEMANN AND GALOIS: PHASE-LOCKING , 2005, math-ph/0510044.

[41]  Evgenii Mikhailovich Lifshitz,et al.  Relativistic quantum theory , 1971 .

[42]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[43]  Bart Braden Restricted representations of classical Lie algebras of types $A_2$ and $B_2$ , 1967 .

[44]  J. Jantzen Representations of Lie algebras in prime characteristic , 1998 .

[46]  S. Adler,et al.  Quaternionic quantum mechanics and quantum fields , 1995 .

[47]  M. Planat,et al.  Twin "Fano-Snowflakes" over the Smallest Ring of Ternions , 2008, 0803.4436.

[48]  S. French,et al.  The Structural Foundations of Quantum Gravity , 2006 .

[49]  D. Giulini Decoherence: A Dynamical Approach to Superselection Rules? , 2000 .