Single-layer graphene-TiO 2 nanotubes array heterojunction for ultraviolet photodetector application

Abstract In this work, we reported on the fabrication of a single-layer graphene (SLG)-TiO2 nanotube arrays (NTs) heterostructures ultraviolet photodetector (UVPD) by transferring chemical vapor deposition derived MLG on the surface of anodic TiO2NTs array. Through varying the annealing atmosphere and anodization time in the TiO2 synthesis procedure, the electronic and optoelectronic properties of the as-fabricated Schottky junction UVPD were studied. It was revealed that the anodic TiO2NTs annealed in air showed a better rectifying behavior and was highly sensitive to UV light irradiation. Further investigation found that the device performance of the UVPD can be readily modulated by the anodization time, and the anodic TiO2NTs with a medium tube length of 9.6 μm exhibits the highest device performance. These results demonstrated that the present SLG-TiO2NTs array hetero-junction UVPD will be highly promising for fabricating high-performance optoelectronic device and system in the future.

[1]  H. Jakobsen,et al.  Photoconductive, free-standing crystallized TiO2 nanotube membranes , 2013 .

[2]  J. Jie,et al.  Monolayer graphene film/silicon nanowire array Schottky junction solar cells , 2011 .

[3]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[4]  Yi Jia,et al.  Graphene‐On‐Silicon Schottky Junction Solar Cells , 2010, Advanced materials.

[5]  J. Jie,et al.  Interfacial state induced ultrasensitive ultraviolet light photodetector with resolved flux down to 85 photons per second , 2015, Nano Research.

[6]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[7]  F. Gao,et al.  Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures , 2015 .

[8]  Wei Lu,et al.  High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. , 2015, Small.

[9]  G. Eda,et al.  Chemically Derived Graphene Oxide: Towards Large‐Area Thin‐Film Electronics and Optoelectronics , 2010, Advanced materials.

[10]  L. Luo,et al.  A Surface Plasmon Enhanced Near‐Infrared Nanophotodetector , 2016 .

[11]  D. Kaczmarek,et al.  Influence of Annealing on Europium Photoexcitation Doped into Nanocrystalline Titania Film Prepared by Magnetron Sputtering , 2009 .

[12]  Yicheng Lu,et al.  Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire , 2004 .

[13]  Andrei Ghicov,et al.  Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. , 2009, Chemical communications.

[14]  G. Cao,et al.  Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases , 2008 .

[15]  Yongqiang Yu,et al.  Optoelectronic characteristics of a near infrared light photodetector based on a topological insulator Sb2Te3 film , 2015 .

[16]  Li Wang,et al.  p-type ZnTe:Ga nanowires: controlled doping and optoelectronic device application , 2015 .

[17]  Ultraviolet photodetectors based on ZnO sheets: The effect of sheet size on photoresponse properties , 2012 .

[18]  Han Hu,et al.  Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. , 2013, ACS applied materials & interfaces.

[19]  A. J. Frank,et al.  Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells , 2000 .

[20]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[21]  E. Monroy,et al.  Wide-bandgap semiconductor ultraviolet photodetectors , 2003 .

[22]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[23]  S. Basu,et al.  Current transport properties of Pd/3C–SiC Schottky junctions with planar and vertical structures , 2004 .

[24]  Craig A. Grimes,et al.  Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption , 2007 .

[25]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[26]  Alison B. Walker,et al.  Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. , 2008, Journal of the American Chemical Society.

[27]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[28]  Chao Xie,et al.  Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. , 2013, Small.

[29]  J. Macák,et al.  Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes , 2005 .

[30]  Huakun Liu,et al.  Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies , 2011 .

[31]  M. O. Manasreh,et al.  Self-Powered Near-Infrared Photodetector Based on Asymmetrical Schottky Interdigital Contacts , 2015, IEEE Electron Device Letters.

[32]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[33]  R. LaPierre,et al.  Highly ordered vertical GaAs nanowire arrays with dry etching and their optical properties , 2014, Nanotechnology.

[34]  L. Luo,et al.  Plasmonic Indium Nanoparticle‐Induced High‐Performance Photoswitch for Blue Light Detection , 2016 .

[35]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[36]  Shaomin Liu,et al.  Construction of Mn0.5Zn0.5Fe2O4 modified TiO2 nanotube array nanocomposite electrodes and their photoelectrocatalytic performance in the degradation of 2,4-DCP , 2015 .

[37]  Shuping Liu,et al.  Enhanced electrochromic properties of a TiO2 nanowire array via decoration with anatase nanoparticles , 2014 .

[38]  Jun Yu Li,et al.  Enhanced UV Response of Single Anodic TiO2 Nanotube: Effect of Water-Modified Microstructures , 2012 .

[39]  N. Biyikli,et al.  Au/TiO2 nanorod‐based Schottky‐type UV photodetectors , 2012 .

[40]  J. Jie,et al.  Fabrication of p-type ZnSe:Sb nanowires for high-performance ultraviolet light photodetector application , 2013, Nanotechnology.

[41]  N. Marzari,et al.  Ultraviolet Photodetectors Based on Anodic TiO2 Nanotube Arrays , 2010 .