CASTAway: An asteroid main belt tour and survey

CASTAway is a mission concept to explore our Solar System’s main asteroid belt. Asteroids and comets provide a window into the formation and evolution of our Solar System and the composition of these objects can be inferred from space - based remote sensing using spectroscopic techniques. Variations in composition across the asteroid populations provide a tracer for the dynamical evolution of the Solar System. The mission combines a long-range (point source) telescopic survey of over 10,000 objects, targeted close encounters with 10–20 asteroids and serendipitous searches to constrain the distribution of smaller (e.g. 10 m) size objects into a single concept. With a carefully targeted trajectory that loops through the asteroid belt, CASTAway would provide a comprehensive survey of the main belt at multiple scales. The scientific payload comprises a 50 cm diameter telescope that includes an integrated low-resolution (R=30 – 100) spectrometer and visible context imager, a thermal (e.g. 6 – 16 μm) imager for use during the flybys, and modified star tracker cameras to detect small (~10 m) asteroids. The CASTAway spacecraft and payload have high levels of technology readiness and are designed to fit within the programmatic and cost caps for a European Space Agency medium class mission, whilst delivering a significant increase in knowledge of our Solar System.

[1]  Z. Ivezic,et al.  Solar system objects observed in the Sloan Digital Sky Survey commissioning data , 2001 .

[2]  Larry Denneau,et al.  The main-belt comets: The Pan-STARRS1 perspective , 2014, 1410.5084.

[3]  E. Scott,et al.  Classification of Meteorites and Their Genetic Relationships , 2014 .

[4]  Ilia S. Grigoriev,et al.  Choosing promising sequences of asteroids , 2013, Autom. Remote. Control..

[5]  Daniel J. Scheeres,et al.  Asteroid Interiors and Morphology , 2015 .

[6]  Stefano Mottola,et al.  Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect , 2007, 0704.1915.

[7]  David Jewitt,et al.  A Population of Comets in the Main Asteroid Belt , 2006, Science.

[8]  J. Margot,et al.  Asteroid Systems: Binaries, Triples, and Pairs , 2015, 1504.00034.

[9]  E. Cloutis,et al.  Oxo Crater on (1) Ceres: Geological History and the Role of Water-ice , 2017 .

[10]  E. Tedesco,et al.  Compositional Structure of the Asteroid Belt , 1982, Science.

[11]  W. Bottke,et al.  The Dynamical Evolution of the Asteroid Belt , 2014, 1501.06204.

[12]  D Tiphene,et al.  The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS , 2011, Science.

[13]  Andrew S. Rivkin,et al.  Detection of ice and organics on an asteroidal surface , 2010, Nature.

[14]  F. G. Carrozzo,et al.  Detection of local H2O exposed at the surface of Ceres , 2016, Science.

[15]  A. Fitzsimmons,et al.  A collision in 2009 as the origin of the debris trail of asteroid P/2010 A2 , 2010, Nature.

[16]  Enrique Solano,et al.  Spectral properties of near-Earth and Mars-crossing asteroids using Sloan photometry , 2016, 1601.02087.

[17]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[18]  B. Carry,et al.  Solar System evolution from compositional mapping of the asteroid belt , 2014, Nature.

[19]  R. Jaumann,et al.  Dawn arrives at Ceres: Exploration of a small, volatile-rich world , 2016, Science.

[20]  Nigel Morris,et al.  High Performance Optical Imaging Payloads for Smallsat Missions , 2008 .

[21]  M. Broz,et al.  Identification and Dynamical Properties of Asteroid Families , 2015, 1502.01628.

[22]  Dale P. Cruikshank,et al.  Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates , 2006 .

[23]  J. Kawaguchi,et al.  The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa , 2006, Science.

[24]  M. Barucci,et al.  Visible-Wavelength Spectroscopy of Asteroids , 2002 .

[25]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[26]  A. Hubault,et al.  The first Rosetta asteroid flyby , 2010 .

[27]  Vishnu Reddy,et al.  Mineralogy and Surface Composition of Asteroids , 2015, 1502.05008.

[28]  H. Miyamoto,et al.  Asteroid Surface Geophysics , 2015, 1503.01931.

[29]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[30]  R. Allen,et al.  Measuring the sizes, shapes, surface features and rotations of Solar System objects with interferometry , 2011, 1102.0802.

[31]  Andrew S. Rivkin,et al.  Astronomical Observations of Volatiles on Asteroids , 2015, 1502.06442.

[32]  Paolo Tanga,et al.  Asteroid spectroscopy with Gaia , 2012 .

[33]  Robert E. Zee Annual AIAA/USU Conference on Small Satellites Drift Recovery and Station Keeping Results for the Historic CanX-4/CanX-5 Formation Flying Mission , 2015 .

[34]  Zeljko Ivezic,et al.  Asteroid Discovery and Characterization with the Large Synoptic Survey Telescope , 2015, Proceedings of the International Astronomical Union.

[35]  W. Bottke,et al.  Asteroids: Recent Advances and New Perspectives , 2015 .

[36]  Richard P. Binzel,et al.  The Compositional Structure of the Asteroid Belt , 2015 .

[37]  Peter Rumler,et al.  Overview of the near-infrared spectrograph (NIRSpec) instrument on-board the James Webb Space Telescope (JWST) , 2007, SPIE Optical Engineering + Applications.

[38]  J. Anderson,et al.  Mass and density determination of 140 Siwa and 4979 Otawara as expected from the Rosetta flybys. , 2001 .

[39]  F. G. Carrozzo,et al.  Localized aliphatic organic material on the surface of Ceres , 2017, Science.

[40]  D. Jewitt,et al.  A recent disruption of the main-belt asteroid P/2010 A2 , 2010, Nature.

[41]  A. McEwen,et al.  Galileo's Encounter with 243 Ida: An Overview of the Imaging Experiment , 1996 .

[42]  Zeljko Ivezic,et al.  The Size Distributions of Asteroid Families in the SDSS Moving Object Catalog 4 , 2008, 0807.3762.

[43]  D. Jewitt,et al.  THE ACTIVE ASTEROIDS , 2011, 1112.5220.

[44]  N. Schorghofer The Lifetime of Ice on Main Belt Asteroids , 2008 .

[45]  Guy J. Consolmagno,et al.  The significance of meteorite density and porosity , 2008 .

[46]  M. J. Griffin,et al.  EChOSim: The Exoplanet Characterisation Observatory software simulator , 2014, 1406.3984.

[47]  R. Jaumann,et al.  Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres , 2015, Nature.

[48]  Javier Cubas,et al.  NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1--design, manufacturing and testing of the infrared channels. , 2015, Applied optics.

[49]  S. Asmar,et al.  Pre-flyby estimates of the precision of the mass determination of asteroid (21) Lutetia from Rosetta radio tracking , 2010 .

[50]  Julie Ziffer,et al.  Water ice and organics on the surface of the asteroid 24 Themis , 2010, Nature.

[51]  D. Jewitt,et al.  DYNAMICS OF LARGE FRAGMENTS IN THE TAIL OF ACTIVE ASTEROID P/2010 A2 , 2013, 1304.1814.

[52]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[53]  J. Granahan Spatially resolved spectral observations of Asteroid 951 Gaspra , 2011 .

[54]  A. Rivkin,et al.  Toward a taxonomy of asteroid spectra in the 3-µm region , 2012 .

[55]  Paolo Ferri,et al.  Rosetta in the year of the swing-bys , 2008 .

[56]  A. Hubault,et al.  Rosetta visits asteroid (21)Lutetia , 2012 .

[57]  Jing Li,et al.  DISINTEGRATING ASTEROID P/2013 R3 , 2014, The Astrophysical Journal.

[58]  Harold F. Levison,et al.  Asteroids Were Born Big , 2009, 0907.2512.

[59]  Simon F. Green,et al.  Asteroid belt multiple flyby options for M-Class Missions , 2016 .

[60]  S. Debei,et al.  Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System , 2011, Science.

[61]  Driss Takir,et al.  Outer Main Belt asteroids: Identification and distribution of four 3-μm spectral groups , 2011 .

[62]  M. Vasile,et al.  Low-thrust tour of the main belt asteroids , 2016 .

[63]  Robert Jedicke,et al.  Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion , 2005 .

[64]  David Jewitt,et al.  HUBBLE AND KECK TELESCOPE OBSERVATIONS OF ACTIVE ASTEROID 288P/300163 (2006 VW139) , 2015, The Astronomical Journal.

[65]  Andrew S. Rivkin,et al.  Asteroids and the James Webb Space Telescope , 2015, 1510.08414.