Analytical Modeling of Dual Material Gate SOI MOSFET with Asymmetric Halo

A dual material gate silicon-on-insulator MOSFET with asymmetrical halo is presented to improve short channel effect and carrier transport efficiency for the first time. The front gate consists of two metal gates with different work functions by making them contacting laterally, and the channel is more heavily doped near the source than in the rest. Using a three-region polynomial potential distribution and a universal boundary condition, a two-dimensional analytical model for the fully depleted silicon-on-insulator MOSFET is developed based on the explicit solution of two-dimensional Poisson’s equation. The model includes the calculation of potential distribution along the channel and subthreshold current. The performance improvement of the novel silicon-on-insulator MOSFET is examined and compared with the traditional silicon-on-insulator MOSFET using the analytical model and two-dimensional device simulator MEDICI. It is found that the novel silicon-on-insulator MOSFET could not only suppress short channel effect, but also increase carrier transport efficiency noticeably. The derived analytical model agrees well with MEDICI.