A pragmatist view of the metaphysics of entanglement

Quantum entanglement is widely believed to be a feature of physical reality with undoubted (though debated) metaphysical implications. But Schrödinger introduced entanglement as a theoretical relation between representatives of the quantum states of two systems. Entanglement represents a physical relation only if quantum states are elements of physical reality. So arguments for metaphysical holism or nonseparability from entanglement rest on a questionable view of quantum theory. Assignment of entangled quantum states predicts experimentally confirmed violation of Bell inequalities. Can one use these experimental results to argue directly for metaphysical conclusions? No. Quantum theory itself gives us our best explanation of violations of Bell inequalities, with no superluminal causal influences and no metaphysical holism or nonseparability—but only if quantum states are understood as objective and relational, though prescriptive rather than ontic. Correct quantum state assignments are backed by true physical magnitude claims: but backing is not grounding. Quantum theory supports no general metaphysical holism or nonseparability; though a claim about a compound physical system may be significant and true while similar claims about its components are neither. Entanglement may well have have few, if any, first-order metaphysical implications. But the quantum theory of entanglement has much to teach the metaphysician about the roles of chance, causation, modality and explanation in the epistemic and practical concerns of a physically situated agent.

[1]  C. Fitts,et al.  The Unity of Knowledge , 1952, Nature.

[2]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[3]  Huw Price,et al.  Time's Arrow and Archimedes’ Point , 1997 .

[4]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[5]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .

[6]  W. Myrvold Relativistic Quantum Becoming , 2003, The British Journal for the Philosophy of Science.

[7]  Jenann Ismael,et al.  Quantum holism: nonseparability as common ground , 2020, Synthese.

[8]  Jeffrey K. Uhlmann,et al.  Quantum Computer Science , 2008, Synthesis Lectures on Quantum Computing.

[9]  M. Chiara,et al.  Philosophy of quantum mechanics , 1982 .

[10]  J. Wheeler,et al.  Quantum theory and measurement , 1983 .

[11]  R. Healey Observation and Quantum Objectivity , 2012, Philosophy of Science.

[12]  Huw Price,et al.  Causation, Chance and the Rational Significance of Supernatural Evidence , 2012 .

[13]  J. Ismael Raid! Dissolving the big, bad bug , 2008 .

[14]  David Wallace,et al.  Quantum Mechanics on Spacetime I: Spacetime State Realism , 2009, The British Journal for the Philosophy of Science.

[15]  C. Peirce How to Make Our Ideas Clear , 2011, The Nature of Truth.

[16]  A. Einstein QUANTEN‐MECHANIK UND WIRKLICHKEIT , 1948 .

[17]  Richard Healey,et al.  How Quantum Theory Helps Us Explain , 2011, The British Journal for the Philosophy of Science.

[18]  A. Vegas The Parts and the Whole , 2011 .

[19]  D. Howard Einstein on locality and separability , 1985 .

[20]  Simon Saunders,et al.  What is the Problem of Measurement , 1994 .

[21]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[22]  J. Woodward Making Things Happen: A Theory of Causal Explanation , 2003 .

[23]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  R. Healey Quantum Decoherence in a Pragmatist View: Dispelling Feynman’s Mystery , 2012 .

[25]  Simon Friederich,et al.  Re-thinking local causality , 2014, Synthese.

[26]  Stephan Hartmann,et al.  Probabilities in physics , 2011 .

[27]  A. Caulton Physical Entanglement in Permutation-Invariant Quantum Mechanics , 2014, 1409.0246.

[28]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[29]  M. Seevinck Monogamy of Correlations vs . Monogamy of Entanglement , 2009 .

[30]  Rob Clifton,et al.  Lorentz-Invariance in Modal Interpretations , 1998 .

[31]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[32]  N. Bohr The Quantum Postulate and the Recent Development of Atomic Theory , 1928, Nature.

[33]  P. H. Eberhard,et al.  Bell’s theorem and the different concepts of locality , 1978 .

[34]  S. BellJ,et al.  Einstein‐Podolsky‐Rosen逆理 量子力学での遠隔作用か , 1987 .

[35]  James T. Cushing,et al.  Philosophical Consequences of Quantum Theory Reflections on Bell's Theorem , 1989 .

[36]  N. Gisin Bell's inequality holds for all non-product states , 1991 .

[37]  Luca Marinatto,et al.  Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis , 2001 .

[38]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[39]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[40]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[41]  J. S. BELLt,et al.  The Einstein-Podolsky-Rosen paradox , 1974, Synthese.

[42]  J. Earman Some Puzzles and Unresolved Issues About Quantum Entanglement , 2015 .

[43]  M. S. Leifer,et al.  Is the Quantum State Real? An Extended Review of -ontology Theorems , 2014, 1409.1570.

[44]  R. Healey Holism and Nonseparability , 1991 .

[45]  Richard Healey,et al.  Quantum Theory: A Pragmatist Approach , 2010, British Journal for the Philosophy of Science.

[46]  Tim Maudlin,et al.  Quantum non-locality and relativity , 1994 .

[47]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[48]  J. Henson Non-separability Does Not Relieve the Problem of Bell’s Theorem , 2013, 1302.7188.

[49]  Nonseparable processes and causal explanation , 1994 .

[50]  R. Healey Local Causality, Probability and Explanation , 2014, 1601.00106.

[51]  G. Ghirardi The parts and the whole: Collapse theories and systems with identical constituents , 2013 .

[52]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[53]  M. P. Seevinck,et al.  Monogamy of correlations versus monogamy of entanglement , 2009, Quantum Inf. Process..

[54]  Arthur Fine,et al.  Joint distributions, quantum correlations, and commuting observables , 1982 .

[55]  J. Ladyman,et al.  Entanglement and non-factorizability , 2013 .

[56]  A. Major,et al.  Wave and particle in molecular interference lithography. , 2009, Physical review letters.

[57]  D. Lewis A Subjectivist’s Guide to Objective Chance , 1980 .

[58]  H. Price Naturalism Without Mirrors , 2011 .

[59]  Arthur Fine,et al.  The shaky game , 1986 .

[60]  T. Maudlin Quantum non-locality and relativity : metaphysical intimations of modern physics , 1996 .

[61]  N. Mermin Quantum Computer Science: An Introduction , 2007 .

[62]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[63]  W. Myrvold Modal Interpretations and Relativity , 2002, quant-ph/0209109.