The isomorphism problem for computable Abelian p-groups of bounded length
暂无分享,去创建一个
[1] N. G. Khisamiev. CONSTRUCTIVE ABELIAN P-GROUPS , 1991 .
[2] Greg Hjorth,et al. Classification and Orbit Equivalence Relations , 1999 .
[3] Charlotte Lin,et al. Recursively presented Abelian groups: Effective p-Group theory. I , 1981, Journal of Symbolic Logic.
[4] Christopher J. Ash,et al. Labelling Systems and r.e. Structures , 1990, Ann. Pure Appl. Log..
[5] Harvey M. Friedman,et al. A Borel reductibility theory for classes of countable structures , 1989, Journal of Symbolic Logic.
[6] F. Richman. The constructive theory of countable abelian $p$-groups. , 1973 .
[7] Wesley Calvert,et al. The isomorphism problem for classes of computable fields , 2002, Arch. Math. Log..
[8] S. Goncharov,et al. Computable Structure and Non-Structure Theorems , 2002 .
[9] Laurel A. Rogers. The structure of p-trees: Algebraic systems related to abelian groups , 1977 .
[10] Julia A. Knight,et al. Computable structures and the hyperarithmetical hierarchy , 2000 .
[11] Ewan J. Barker. Back and Forth Relations for Reduced Abelian p-Groups , 1995, Ann. Pure Appl. Log..
[12] A. S. Morozov,et al. Functional trees and automorphisms of models , 1993 .
[14] Stephen G. Simpson,et al. Countable algebra and set existence axioms , 1983, Ann. Pure Appl. Log..
[15] Irving Kaplansky,et al. Infinite Abelian groups , 1954 .
[16] André Nies,et al. Undecidable fragments of elementary theories , 1996 .
[17] Arkadii M. Slinko,et al. Degree spectra and computable dimensions in algebraic structures , 2002, Ann. Pure Appl. Log..
[18] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.