Top-down facilitation of visual object recognition: object-based and context-based contributions.

[1]  M. Bar,et al.  The parahippocampal cortex mediates spatial and nonspatial associations. , 2007, Cerebral cortex.

[2]  E. Halgren,et al.  Top-down facilitation of visual recognition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Moshe Bar,et al.  The rise and fall of priming: how visual exposure shapes cortical representations of objects. , 2005, Cerebral cortex.

[4]  M. Bar,et al.  Can a gun prime a hairbrush? The “initial guesses” that drive top-down contextual facilitation of object recognition , 2005 .

[5]  Moshe Bar,et al.  The parahippocampal cortex mediates both spatial and non-spatial associative processing , 2005 .

[6]  Sabrina M. Tom,et al.  Dissociable correlates of recollection and familiarity within the medial temporal lobes , 2004, Neuropsychologia.

[7]  R. Buckner,et al.  Evidence for Neural Effects of Repetition that Directly Correlate with Behavioral Priming , 2004, Journal of Cognitive Neuroscience.

[8]  M. Bar Visual objects in context , 2004, Nature Reviews Neuroscience.

[9]  R. D. Gordon Attentional allocation during the perception of scenes. , 2004, Journal of experimental psychology. Human perception and performance.

[10]  Jodi L. Davenport,et al.  Scene Consistency in Object and Background Perception , 2004, Psychological science.

[11]  Cindy Lustig,et al.  Preserved Neural Correlates of Priming in Old Age and Dementia , 2004, Neuron.

[12]  M. D’Esposito,et al.  Category-specific modulation of inferior temporal activity during working memory encoding and maintenance. , 2004, Brain research. Cognitive brain research.

[13]  Karl J. Friston,et al.  Where bottom-up meets top-down: neuronal interactions during perception and imagery. , 2004, Cerebral cortex.

[14]  C. Stark,et al.  Medial temporal lobe activation during encoding and retrieval of novel face-name pairs , 2004, Hippocampus.

[15]  Maija Pihlajamäki,et al.  Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans , 2004, The European journal of neuroscience.

[16]  Daniel L Schacter,et al.  Encoding activity in anterior medial temporal lobe supports subsequent associative recognition , 2004, NeuroImage.

[17]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[18]  Karl J. Friston Learning and inference in the brain , 2003, Neural Networks.

[19]  Hans-Jochen Heinze,et al.  Human Hippocampal and Parahippocampal Activity during Visual Associative Recognition Memory for Spatial and Nonspatial Stimulus Configurations , 2003, The Journal of Neuroscience.

[20]  J. Pokorny,et al.  Spatial frequency processing in inferred PC- and MC-pathways , 2003, Vision Research.

[21]  Wilma Koutstaal,et al.  Neural mechanisms of visual object priming: evidence for perceptual and semantic distinctions in fusiform cortex , 2003, NeuroImage.

[22]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  M. Bar A Cortical Mechanism for Triggering Top-Down Facilitation in Visual Object Recognition , 2003, Journal of Cognitive Neuroscience.

[24]  R. Henson Neuroimaging studies of priming , 2003, Progress in Neurobiology.

[25]  R. Buckner,et al.  Functional Dissociation among Components of Remembering: Control, Perceived Oldness, and Content , 2003, The Journal of Neuroscience.

[26]  M. Bar,et al.  Cortical Analysis of Visual Context , 2003, Neuron.

[27]  Paul E. Downing,et al.  Viewpoint-Specific Scene Representations in Human Parahippocampal Cortex , 2003, Neuron.

[28]  M. Chun,et al.  Implicit, long-term spatial contextual memory. , 2003, Journal of experimental psychology. Learning, memory, and cognition.

[29]  Jason P. Mitchell,et al.  Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Richard S. J. Frackowiak,et al.  Age effects on the neural correlates of successful memory encoding. , 2003, Brain : a journal of neurology.

[31]  R. Henson,et al.  Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming , 2002, Nature Neuroscience.

[32]  R. Malach,et al.  The topography of high-order human object areas , 2002, Trends in Cognitive Sciences.

[33]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[34]  B. Vogt,et al.  Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices , 2001, The Journal of comparative neurology.

[35]  C. Gilbert,et al.  The Neural Basis of Perceptual Learning , 2001, Neuron.

[36]  E. Maguire The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. , 2001, Scandinavian journal of psychology.

[37]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[38]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[39]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[40]  M. Bar,et al.  Cortical Mechanisms Specific to Explicit Visual Object Recognition , 2001, Neuron.

[41]  D. Schacter,et al.  Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex , 2001, Neuropsychologia.

[42]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[43]  S. Sternberg,et al.  Separate modifiability, mental modules, and the use of pure and composite measures to reveal them. , 2001, Acta psychologica.

[44]  H. Barbas,et al.  The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. , 2000, Cerebral cortex.

[45]  Y. Miyashita,et al.  Neural representation of visual objects: encoding and top-down activation , 2000, Current Opinion in Neurobiology.

[46]  R. Knight,et al.  Prefrontal modulation of visual processing in humans , 2000, Nature Neuroscience.

[47]  J. Price,et al.  The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. , 2000, Cerebral cortex.

[48]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[49]  J. Henderson,et al.  Does consistent scene context facilitate object perception? , 1998, Journal of experimental psychology. General.

[50]  Amanda Parker,et al.  The von Restorff Effect in Visual Object Recognition Memory in Humans and Monkeys: The Role of Frontal/Perirhinal Interaction , 1998, Journal of Cognitive Neuroscience.

[51]  R. Desimone Visual attention mediated by biased competition in extrastriate visual cortex. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  J. Desmond,et al.  Making memories: brain activity that predicts how well visual experience will be remembered. , 1998, Science.

[53]  A. Dale,et al.  Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. , 1998, Science.

[54]  M. D’Esposito,et al.  An Area within Human Ventral Cortex Sensitive to “Building” Stimuli Evidence and Implications , 1998, Neuron.

[55]  Michael S. Gazzaniga,et al.  Creating false memories for visual scenes , 1998, Neuropsychologia.

[56]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[57]  D. Schacter,et al.  Priming and the Brain , 1998, Neuron.

[58]  G W Humphreys,et al.  Top-down processes in object identification: evidence from experimental psychology, neuropsychology and functional anatomy. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[59]  M. D’Esposito,et al.  The parahippocampus subserves topographical learning in man , 1996, NeuroImage.

[60]  David A. Leopold,et al.  What is rivalling during binocular rivalry? , 1996, Nature.

[61]  S. Ullman,et al.  Spatial Context in Recognition , 1996, Perception.

[62]  Leslie G. Ungerleider,et al.  Neural correlates of category-specific knowledge , 1996, Nature.

[63]  A. Nowicka,et al.  Visual-spatial-frequency model of cerebral asymmetry: a critical survey of behavioral and electrophysiological studies. , 1996, Psychological bulletin.

[64]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[65]  J. Bullier,et al.  Parallel versus serial processing: new vistas on the distributed organization of the visual system , 1995, Current Opinion in Neurobiology.

[66]  S. Kosslyn,et al.  Identifying objects at different levels of hierarchy: A positron emission tomography study , 1995 .

[67]  S Ullman,et al.  Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. , 1995, Cerebral cortex.

[68]  A. Oliva,et al.  From Blobs to Boundary Edges: Evidence for Time- and Spatial-Scale-Dependent Scene Recognition , 1994 .

[69]  S. Kosslyn Image and Brain , 1994 .

[70]  S. Kosslyn,et al.  Visual Mental Imagery Activates Topographically Organized Visual Cortex: PET Investigations , 1993, Journal of Cognitive Neuroscience.

[71]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[72]  C. B. Cave,et al.  The Role of Parts and Spatial Relations in Object Identification , 1993, Perception.

[73]  J. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[74]  J. Henderson Identifying objects across saccades: effects of extrafoveal preview and flanker object context. , 1992, Journal of experimental psychology. Learning, memory, and cognition.

[75]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[76]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[77]  R Shapley,et al.  Visual sensitivity and parallel retinocortical channels. , 1990, Annual review of psychology.

[78]  K. Rayner,et al.  Effects of foveal priming and extrafoveal preview on object identification. , 1987, Journal of experimental psychology. Human perception and performance.

[79]  Mortimer Mishkin,et al.  Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys , 1986, Behavioural Brain Research.

[80]  Richard L. Metzger,et al.  The nature of processing early in picture perception , 1983, Psychological research.

[81]  I. Biederman,et al.  Scene perception: Detecting and judging objects undergoing relational violations , 1982, Cognitive Psychology.

[82]  S. Grossberg,et al.  How does a brain build a cognitive code? , 1980, Psychological review.

[83]  Howard S. Hock,et al.  Real-world schemata and scene recognition in adults and children , 1978 .

[84]  J M Mandler,et al.  Some of the thousand words a picture is worth. , 1976, Journal of experimental psychology. Human learning and memory.

[85]  tephen E. Palmer The effects of contextual scenes on the identification of objects , 1975, Memory & cognition.

[86]  I. Biederman,et al.  On the information extracted from a glance at a scene. , 1974, Journal of experimental psychology.

[87]  I. Biederman Perceiving Real-World Scenes , 1972, Science.

[88]  E. Gibson Principles of Perceptual Learning and Development , 1969 .