A Survey of Nonstandard Sequent Calculi

The paper is a brief survey of some sequent calculi (SC) which do not follow strictly the shape of sequent calculus introduced by Gentzen. We propose the following rough classification of all SC: Systems which are based on some deviations from the ordinary notion of a sequent are called generalised; remaining ones are called ordinary. Among the latter we distinguish three types according to the proportion between the number of primitive sequents and rules. In particular, in one of these types, called Gentzen’s type, we have a subtype of standard SC due to Gentzen. Hence by nonstandard ones we mean all these ordinary SC where other kinds of rules are applied than those admitted in standard Gentzen’s sequent calculi. We describe briefly some of the most interesting or important nonstandard SC belonging to the three abovementioned types.

[1]  G. Gentzen,et al.  Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen , 1933 .

[2]  A. Avron The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .

[3]  R. Smullyan First-Order Logic , 1968 .

[4]  Jörg Hudelmaier,et al.  Classical Lambek Logic , 1995, TABLEAUX.

[5]  Michael Soltys Bulletin of the Section of Logic , 2002 .

[6]  Heinrich Wansing,et al.  Sequent Systems for Modal Logics , 2002 .

[7]  Peter B. Andrews An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.

[8]  Andrzej Wisniewski Socratic Proofs , 2004, J. Philos. Log..

[9]  Peter Schroeder-Heister,et al.  Resolution and the Origins of Structural Reasoning: Early Proof-Theoretic Ideas of Hertz and Gentzen , 2002, Bulletin of Symbolic Logic.

[10]  P. Hertz Über Axiomensysteme für beliebige Satzsysteme , .

[11]  Patrick Suppes,et al.  Introduction To Logic , 1958 .

[12]  Andrzej Indrzejczak Generalised sequent calculus for propositional modal logics , 1997 .

[13]  Andrzej Wisniewski,et al.  Socratic Trees , 2013, Stud Logica.

[14]  William W. Tait,et al.  Normal derivability in classical logic , 1968 .

[15]  G. Hasenjaeger Introduction to the Basic Concepts and Problems of Modern Logic , 1971 .

[16]  Peter Schroeder-Heister,et al.  Popper's theory of deductive inference and the concept of a logical constant , 1984 .

[17]  Ryo Kashima,et al.  Cut-free sequent calculi for some tense logics , 1994, Stud Logica.

[18]  Kosta Dosen,et al.  Sequent-systems for modal logic , 1985, Journal of Symbolic Logic.

[19]  Roman Suszko,et al.  Formalna teoria wartości logicznych I , 1957 .

[20]  G. Rousseau Sequents in many valued logic I , 1967 .

[21]  R. Montague,et al.  Logic : Techniques of Formal Reasoning , 1964 .

[22]  Arnon Avron,et al.  Simple Consequence Relations , 1988, Inf. Comput..

[23]  Sara Negri,et al.  Structural proof theory , 2001 .

[24]  Haskell B. Curry,et al.  Foundations of Mathematical Logic , 1964 .

[25]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[26]  Arnold Koslow,et al.  A structuralist theory of logic , 1992 .

[27]  H. Nishimura A Study of Some Tense Logics by Gentzen's Sequential Method , 1980 .

[28]  Jonas Schreiber Natural Deduction Hybrid Systems And Modal Logics , 2016 .

[29]  S. Blamey,et al.  A Perspective on Modal Sequent Logic , 1991 .

[30]  H. Wansing Displaying Modal Logic , 1998 .

[31]  Phiniki Stouppa A Deep Inference System for the Modal Logic S5 , 2007, Stud Logica.

[32]  James W. Garson Modal Logic for Philosophers , 2006 .

[33]  Michael Basch,et al.  Algebraic methods of mathematical logic , 1967 .

[34]  Paul Bernays CHAPTER 1 – BETRACHTUNGEN ZUM SEQUENZEN-KALKUL , 1965 .

[35]  Hugues Leblanc Proof routines for the propositional calculus , 1963, Notre Dame J. Formal Log..

[36]  Dana S. Scott,et al.  Rules and Derived Rules , 1974 .

[37]  Kosta Dosen,et al.  Logical Constants as Punctuation Marks , 1989, Notre Dame J. Formal Log..

[38]  K. R. Popper,et al.  XII.—Logic without Assumptions , 1947 .

[39]  Francesca Poggiolesi,et al.  Gentzen Calculi for Modal Propositional Logic , 2010 .

[40]  Hugues Leblanc,et al.  Two separation theorems for natural deduction , 1966, Notre Dame J. Formal Log..

[41]  Kasimir Ajdukiewicz,et al.  Sprache und Sinn , 1934 .

[42]  Heinrich Wansing,et al.  Hypersequent and Display Calculi – a Unified Perspective , 2014, Studia Logica.

[43]  K. R. Popper,et al.  I.—NEW FOUNDATIONS FOR LOGIC , 1947 .

[44]  G. Gentzen Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .

[45]  Jan von Plato,et al.  Natural deduction with general elimination rules , 2001, Arch. Math. Log..