A Survey of Nonstandard Sequent Calculi
暂无分享,去创建一个
[1] G. Gentzen,et al. Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen , 1933 .
[2] A. Avron. The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .
[3] R. Smullyan. First-Order Logic , 1968 .
[4] Jörg Hudelmaier,et al. Classical Lambek Logic , 1995, TABLEAUX.
[5] Michael Soltys. Bulletin of the Section of Logic , 2002 .
[6] Heinrich Wansing,et al. Sequent Systems for Modal Logics , 2002 .
[7] Peter B. Andrews. An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.
[8] Andrzej Wisniewski. Socratic Proofs , 2004, J. Philos. Log..
[9] Peter Schroeder-Heister,et al. Resolution and the Origins of Structural Reasoning: Early Proof-Theoretic Ideas of Hertz and Gentzen , 2002, Bulletin of Symbolic Logic.
[10] P. Hertz. Über Axiomensysteme für beliebige Satzsysteme , .
[11] Patrick Suppes,et al. Introduction To Logic , 1958 .
[12] Andrzej Indrzejczak. Generalised sequent calculus for propositional modal logics , 1997 .
[13] Andrzej Wisniewski,et al. Socratic Trees , 2013, Stud Logica.
[14] William W. Tait,et al. Normal derivability in classical logic , 1968 .
[15] G. Hasenjaeger. Introduction to the Basic Concepts and Problems of Modern Logic , 1971 .
[16] Peter Schroeder-Heister,et al. Popper's theory of deductive inference and the concept of a logical constant , 1984 .
[17] Ryo Kashima,et al. Cut-free sequent calculi for some tense logics , 1994, Stud Logica.
[18] Kosta Dosen,et al. Sequent-systems for modal logic , 1985, Journal of Symbolic Logic.
[19] Roman Suszko,et al. Formalna teoria wartości logicznych I , 1957 .
[20] G. Rousseau. Sequents in many valued logic I , 1967 .
[21] R. Montague,et al. Logic : Techniques of Formal Reasoning , 1964 .
[22] Arnon Avron,et al. Simple Consequence Relations , 1988, Inf. Comput..
[23] Sara Negri,et al. Structural proof theory , 2001 .
[24] Haskell B. Curry,et al. Foundations of Mathematical Logic , 1964 .
[25] S. C. Kleene,et al. Introduction to Metamathematics , 1952 .
[26] Arnold Koslow,et al. A structuralist theory of logic , 1992 .
[27] H. Nishimura. A Study of Some Tense Logics by Gentzen's Sequential Method , 1980 .
[28] Jonas Schreiber. Natural Deduction Hybrid Systems And Modal Logics , 2016 .
[29] S. Blamey,et al. A Perspective on Modal Sequent Logic , 1991 .
[30] H. Wansing. Displaying Modal Logic , 1998 .
[31] Phiniki Stouppa. A Deep Inference System for the Modal Logic S5 , 2007, Stud Logica.
[32] James W. Garson. Modal Logic for Philosophers , 2006 .
[33] Michael Basch,et al. Algebraic methods of mathematical logic , 1967 .
[34] Paul Bernays. CHAPTER 1 – BETRACHTUNGEN ZUM SEQUENZEN-KALKUL , 1965 .
[35] Hugues Leblanc. Proof routines for the propositional calculus , 1963, Notre Dame J. Formal Log..
[36] Dana S. Scott,et al. Rules and Derived Rules , 1974 .
[37] Kosta Dosen,et al. Logical Constants as Punctuation Marks , 1989, Notre Dame J. Formal Log..
[38] K. R. Popper,et al. XII.—Logic without Assumptions , 1947 .
[39] Francesca Poggiolesi,et al. Gentzen Calculi for Modal Propositional Logic , 2010 .
[40] Hugues Leblanc,et al. Two separation theorems for natural deduction , 1966, Notre Dame J. Formal Log..
[41] Kasimir Ajdukiewicz,et al. Sprache und Sinn , 1934 .
[42] Heinrich Wansing,et al. Hypersequent and Display Calculi – a Unified Perspective , 2014, Studia Logica.
[43] K. R. Popper,et al. I.—NEW FOUNDATIONS FOR LOGIC , 1947 .
[44] G. Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .
[45] Jan von Plato,et al. Natural deduction with general elimination rules , 2001, Arch. Math. Log..