Oxidation behavior and ablation mechanism of Cf/ZrB2-SiC composite fabricated by vibration-assisted slurry impregnation combined with low-temperature hot pressing

[1]  Xinghong Zhang,et al.  Microstructures and mechanical properties of Cf/ZrB2-SiC composite fabricated by nano slurry brushing combined with low-temperature hot pressing , 2019, Journal of Alloys and Compounds.

[2]  D. Sciti,et al.  Arc-jet wind tunnel characterization of ultra-high-temperature ceramic matrix composites , 2019, Corrosion Science.

[3]  G. Hilmas,et al.  Mechanical behaviour of carbon fibre reinforced TaC/SiC and ZrC/SiC composites up to 2100°C , 2019, Journal of the European Ceramic Society.

[4]  Xinghong Zhang,et al.  A novel vibration-assisted slurry impregnation to fabricate Cf/ZrB2-SiC composite with enhanced mechanical properties , 2019, Journal of the European Ceramic Society.

[5]  Xinghong Zhang,et al.  Effect of pyrolytic carbon coating on the microstructure and fracture behavior of the Cf/ZrB2-SiC composite , 2018, Ceramics International.

[6]  D. Sciti,et al.  Introduction to H2020 project C3HARME – next generation ceramic composites for combustion harsh environment and space , 2018, Advances in Applied Ceramics.

[7]  Yin Zhang,et al.  Preparation of carbon/carbon‐ultra high temperature ceramics composites with ultra high temperature ceramics coating , 2018 .

[8]  D. Sciti,et al.  On the thermal shock resistance and mechanical properties of novel unidirectional UHTCMCs for extreme environments , 2018, Scientific Reports.

[9]  V. V. B. Prasad,et al.  Microstructure, mechanical properties and oxidation behavior of short carbon fiber reinforced ZrB2-20v/oSiC-2v/oB4C composite , 2018 .

[10]  D. Sciti,et al.  Oxidation behaviour of a continuous carbon fibre reinforced ZrB2–SiC composite , 2017 .

[11]  Xinghong Zhang,et al.  High-performance ZrB2-SiC-Cf composite prepared by low-temperature hot pressing using nanosized ZrB2 powder , 2017 .

[12]  D. Sciti,et al.  Efficacy of a ZrB2–SiC matrix in protecting C fibres from oxidation in novel UHTCMC materials , 2017 .

[13]  Q. Fu,et al.  Ablation resistance of wedge-shaped C/C-ZrB2-ZrC-SiC composites exposed to an oxyacetylene torch , 2016 .

[14]  S. Rosiwal,et al.  Fabrication of ultra high temperature ceramic matrix composites using a reactive melt infiltration process , 2016 .

[15]  Nitin P. Padture,et al.  Advanced structural ceramics in aerospace propulsion. , 2016, Nature materials.

[16]  Nicolas Lupoglazoff,et al.  Recent Advances in Research on Solid Rocket Propulsion , 2016 .

[17]  Jiecai Han,et al.  Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance. , 2016, ACS applied materials & interfaces.

[18]  V. Medri,et al.  Continuous C fibre composites with a porous ZrB2 Matrix , 2015 .

[19]  Liping Wang,et al.  Ablation mechanism of C/C–ZrB2–ZrC–SiC composite fabricated by polymer infiltration and pyrolysis with preform of Cf/ZrB2 , 2015 .

[20]  D. K. Kim,et al.  Oxidation behavior of ZrB2-xSiC composites at 1500 °C under different oxygen partial pressures , 2014 .

[21]  H. Hu,et al.  Influence of pyrocarbon amount in C/C preform on the microstructure and properties of C/ZrC composites prepared via reactive melt infiltration , 2014 .

[22]  D. Sciti,et al.  Oxidation behavior of ZrB2 composites doped with various transition metal silicides , 2014 .

[23]  Saikat Maitra,et al.  OXIDATION BEHAVIOUR OF SILICON CARBIDE - A REVIEW , 2014 .

[24]  Xinghong Zhang,et al.  Effects of graphite flake diameter on mechanical properties and thermal shock behavior of ZrB2–nanoSiC–graphite ceramics , 2013 .

[25]  S. Dong,et al.  Fabrication and properties of 3-D Cf/ZrB2–ZrC–SiC composites via polymer infiltration and pyrolysis , 2013 .

[26]  W. Zhi,et al.  The thermal shock resistance of the ZrB2–SiC–ZrC ceramic , 2011 .

[27]  R. Savino,et al.  Dynamic oxidation of ultra-high temperature ZrB2–SiC under high enthalpy supersonic flows , 2011 .

[28]  Jiecai Han,et al.  Microstructural feature and thermal shock behavior of hot-pressed ZrB2–SiC–ZrO2 composite , 2009 .

[29]  Guo‐Jun Zhang,et al.  Ultrahigh temperature ceramics (UHTCs) based on ZrB2 and HfB2 systems: Powder synthesis, densification and mechanical properties , 2009 .

[30]  Jun Liang,et al.  Mechanical properties and thermal shock behavior of hot-pressed ZrB2–SiC–AlN composites , 2009 .

[31]  Xinghong Zhang,et al.  Microstructure and thermal shock behavior of ZrB2–SiC–graphite composite , 2009 .

[32]  William G. Fahrenholtz,et al.  Thermal shock resistance of ZrB2 and ZrB2–30% SiC , 2008 .

[33]  A. Bellosi,et al.  Processing and properties of ultra-high temperature ceramics for space applications , 2008 .

[34]  Jiecai Han,et al.  Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions , 2008 .

[35]  Sufang Tang,et al.  Fabrication and Characterization of an Ultra‐High‐Temperature Carbon Fiber‐Reinforced ZrB2–SiC Matrix Composite , 2007 .

[36]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[37]  William G. Fahrenholtz,et al.  Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .

[38]  G. Hilmas,et al.  Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500 °C , 2007 .

[39]  D. Van Wie,et al.  The hypersonic environment: Required operating conditions and design challenges , 2004 .

[40]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[41]  Mark M. Opeka,et al.  Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds , 1999 .