Centers with degenerate infinity and their commutators

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  N. Lloyd The Number of Periodic Solutions of the Equation Ż=zN+p1(t)zN−1+…+pN(t) , 1973 .

[3]  N. Lloyd Small amplitude limit cycles of polynomial differential equations , 1983 .

[4]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[5]  N. G. Lloyd,et al.  Non-autonomous equations related to polynomial two-dimensional systems , 1987, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  N. Lloyd,et al.  Periodic solutions of a quartic nonautonomous equation , 1987 .

[7]  Christiane Rousseau,et al.  Linearization of Isochronous Centers , 1995 .

[8]  V. Fernández,et al.  Centre and isochronicity conditions for systems with homogeneous nonlinearities , 1995 .

[9]  Noel G. Lloyd,et al.  Small-amplitude limit cycles in polynomial Liénard systems , 1996 .

[10]  J. Devlin Coexisting Isochronous and Nonisochronous Centres , 1996 .

[11]  Christiane Rousseau,et al.  DARBOUX LINEARIZATION AND ISOCHRONOUS CENTERS WITH A RATIONAL FIRST INTEGRAL , 1997 .

[12]  C. Collins Conditions for a centre in a simple class of cubic systems , 1997 .

[13]  Colin Christopher,et al.  Isochronous centers in planar polynomial systems , 1997 .

[14]  Isochronicity and commutation of polynomial vector fields , 1999 .

[15]  Marco Sabatini,et al.  ON THE PERIOD FUNCTION OF LIENARD SYSTEMS , 1999 .

[16]  Marco Sabatini Quadratic isochronous centers commute , 1999 .

[17]  M. Reyes,et al.  Campos cuárticos con velocidad angular constante , 1999 .

[18]  E. Freire,et al.  Isochronicity via normal form , 2000 .

[19]  A. Algaba,et al.  Uniformly Isochronous Quintic Planar Vector Fields , 2000 .

[20]  Jaume Giné,et al.  On Integrability of differential equations Defined by the Sum of Homogeneous Vector Fields with degenerate infinity , 2001, Int. J. Bifurc. Chaos.