Local Lagrangian reduced-order modeling for Rayleigh-Taylor instability by solution manifold decomposition

Rayleigh–Taylor instability is a classical hydrodynamic instability of great interest in various disciplines of science and engineering, including astrophyics, atmospheric sciences and climate, geophysics, and fusion energy. Analytical methods cannot be applied to explain the long-time behavior of Rayleigh–Taylor instability, and therefore numerical simulation of the full problem is required. However, in order to capture the growth of amplitude of perturbations accurately, both the spatial and temporal discretization need to be extremely fine for traditional numerical methods, and the long-time simulation may become prohibitively expensive. In this paper, we propose efficient reduced order model techniques to accelerate the simulation of Rayleigh–Taylor instability in compressible gas dynamics. We introduce a general framework for decomposing the solution manifold to construct the temporal domain partition and temporally-local reduced order model construction with varying Atwood number. We propose two practical approaches in this framework, namely decomposition by using physical time and by penetration distance respectively. Numerical results are presented to examine the performance of the proposed approaches.

[1]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[2]  G. Taylor The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[4]  A. A. Amsden,et al.  FLUID DYNAMICS. A LASL Monograph. , 1971 .

[5]  S. A. Colgate,et al.  Rayleigh-Taylor driven supernova explosions: A two-dimensional numerical study , 1980 .

[6]  M. J. Keskinen,et al.  Nonlinear theory and experimental observations of the local collisional Rayleigh-Taylor instability in a descending equatorial spread-f ionosphere. Memorandum report , 1981 .

[7]  D. Sharp An overview of Rayleigh-Taylor instability☆ , 1984 .

[8]  Gretar Tryggvason,et al.  Computations of three‐dimensional Rayleigh–Taylor instability , 1990 .

[9]  Shoichi Yamada,et al.  Rayleigh-Taylor instability in the asymmetric supernova explosion , 1991 .

[10]  D. Youngs,et al.  Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability , 1991 .

[11]  Dieter Armbruster,et al.  Reconstructing phase space from PDE simulations , 1992 .

[12]  David L. Hysell,et al.  Nonlinear Rayleigh-Taylor instabilities, atmospheric gravity waves and equatorial spread F , 1993 .

[13]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[14]  Y. Marzouk,et al.  Large-Scale Inverse Problems and Quantification of Uncertainty , 1994 .

[15]  Hans-Peter Plag,et al.  Rayleigh-Taylor instabilities of a self-gravitating Earth , 1995 .

[16]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[17]  P. Molnar,et al.  The growth of Rayleigh-Taylor-type instabilities in the lithosphere for various rheological and dens , 1997 .

[18]  Robert L. McCrory,et al.  Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion , 1998 .

[19]  J. Blondin,et al.  Rayleigh-Taylor Instabilities in Young Supernova Remnants Undergoing Efficient Particle Acceleration , 2001, astro-ph/0104024.

[20]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[21]  Michael Zingale,et al.  A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration , 2004 .

[22]  A. Antoulas,et al.  A Survey of Model Reduction by Balanced Truncation and Some New Results , 2004 .

[23]  Vladimir T. Tikhonchuk,et al.  Compressible Rayleigh–Taylor instabilities in supernova remnants , 2004 .

[24]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[25]  Max Gunzburger,et al.  POD and CVT-based reduced-order modeling of Navier-Stokes flows , 2006 .

[26]  E. Sturler,et al.  Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .

[27]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[28]  David Galbally,et al.  Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems , 2009 .

[29]  J. Strutt Scientific Papers: Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density , 2009 .

[30]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[31]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[32]  Harbir Antil,et al.  Reduced order modeling based shape optimization of surface acoustic wave driven microfluidic biochips , 2012, Math. Comput. Simul..

[33]  Charbel Farhat,et al.  Nonlinear Model Reduction for CFD Problems Using Local Reduced Order Bases , 2012 .

[34]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[35]  G. Iaccarino,et al.  Reduced order models for parameterized hyperbolic conservations laws with shock reconstruction , 2012 .

[36]  Tzanio V. Kolev,et al.  High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..

[37]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[38]  Razvan Stefanescu,et al.  POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model , 2012, J. Comput. Phys..

[39]  Youngsoo Choi,et al.  Simultaneous Analysis and Design in Pde-constrained Optimization a Dissertation Submitted to the Institute for Computational and Mathematical Engineering and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy , 2013 .

[40]  Razvan Stefanescu,et al.  Application of POD-DEIM Approach for Dimension Reduction of a Diffusive Predator-Prey System with Allee Effect , 2013, LSSC.

[41]  Junseok Kim,et al.  Numerical simulation of the three-dimensional Rayleigh-Taylor instability , 2013, Comput. Math. Appl..

[42]  Kevin Carlberg,et al.  Adaptive h‐refinement for reduced‐order models , 2014, ArXiv.

[43]  Juan Du,et al.  Non-linear model reduction for the Navier-Stokes equations using residual DEIM method , 2014, J. Comput. Phys..

[44]  B. R. Noack,et al.  On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body , 2013, Journal of Fluid Mechanics.

[45]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[46]  Pengfei Zhao,et al.  POD-DEIM Based Model Order Reduction for the Spherical Shallow Water Equations with Turkel-Zwas Finite Difference Discretization , 2014, J. Appl. Math..

[47]  Ramon Codina,et al.  Reduced-order subscales for POD models , 2015 .

[48]  Charbel Farhat,et al.  A Practical Factorization of a Schur Complement for PDE-Constrained Distributed Optimal Control , 2013, Journal of Scientific Computing.

[49]  C. Farhat,et al.  Design optimization using hyper-reduced-order models , 2015 .

[50]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[51]  E. Gildin,et al.  Localized Model Reduction in Porous Media Flow , 2015 .

[52]  Rémi Abgrall,et al.  Robust model reduction by $$L^{1}$$L1-norm minimization and approximation via dictionaries: application to nonlinear hyperbolic problems , 2016, Adv. Model. Simul. Eng. Sci..

[53]  Alessandro Veneziani,et al.  Efficient Estimation of Cardiac Conductivities via POD-DEIM Model Order Reduction , 2016, 1603.05722.

[54]  M. Cheng A reduced-order representation of the Schrödinger equation , 2016 .

[55]  Sebastian Schöps,et al.  An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem , 2016, ArXiv.

[56]  K. Duraisamy,et al.  Non-Markovian Closure Models for Large Eddy Simulations using the Mori-Zwanzig Formalism , 2016, 1611.03311.

[57]  Victor M. Calo,et al.  Fast Multiscale Reservoir Simulations With POD-DEIM Model Reduction , 2016 .

[58]  Zlatko Drmac,et al.  A New Selection Operator for the Discrete Empirical Interpolation Method - Improved A Priori Error Bound and Extensions , 2015, SIAM J. Sci. Comput..

[59]  Oliver Röhrle,et al.  POD-DEIM reduction of computational EMG models , 2017, J. Comput. Sci..

[60]  Maciej Balajewicz,et al.  Lagrangian basis method for dimensionality reduction of convection dominated nonlinear flows , 2017, ArXiv.

[61]  Daniel A. Tortorelli,et al.  Adaptive mesh refinement in stress-constrained topology optimization , 2018, Structural and Multidisciplinary Optimization.

[62]  Donsub Rim,et al.  Transport Reversal for Model Reduction of Hyperbolic Partial Differential Equations , 2017, SIAM/ASA J. Uncertain. Quantification.

[63]  Carolyn C. Kuranz,et al.  Rayleigh–Taylor instabilities in high-energy density settings on the National Ignition Facility , 2018, Proceedings of the National Academy of Sciences.

[64]  Youngsoo Choi,et al.  Conservative model reduction for finite-volume models , 2017, J. Comput. Phys..

[65]  Volker Mehrmann,et al.  The Shifted Proper Orthogonal Decomposition: A Mode Decomposition for Multiple Transport Phenomena , 2015, SIAM J. Sci. Comput..

[66]  Omer San,et al.  Extreme learning machine for reduced order modeling of turbulent geophysical flows. , 2018, Physical review. E.

[67]  Hong Wang,et al.  POD/DEIM Reduced-Order Modeling of Time-Fractional Partial Differential Equations with Applications in Parameter Identification , 2016, J. Sci. Comput..

[68]  Zlatko Drmac,et al.  The Discrete Empirical Interpolation Method: Canonical Structure and Formulation in Weighted Inner Product Spaces , 2017, SIAM J. Matrix Anal. Appl..

[69]  P. Di Nicola,et al.  From ICF to laboratory astrophysics: ablative and classical Rayleigh–Taylor instability experiments in turbulent-like regimes , 2018, Nuclear Fusion.

[70]  Benjamin Peherstorfer,et al.  Manifold Approximations via Transported Subspaces: Model reduction for transport-dominated problems , 2019, SIAM J. Sci. Comput..

[71]  C. Farhat International Journal for Numerical Methods in Engineering , 2019 .

[72]  Daniel A. White,et al.  A dual mesh method with adaptivity for stress-constrained topology optimization , 2020 .

[73]  Rui Jiang,et al.  Implementation and detailed assessment of a GNAT reduced-order model for subsurface flow simulation , 2019, J. Comput. Phys..

[74]  Youngsoo Choi,et al.  Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction , 2017, SIAM J. Sci. Comput..

[75]  Trenton Kirchdoerfer,et al.  Accelerating design optimization using reduced order models , 2019, ArXiv.

[76]  Youngsoo Choi,et al.  Efficient nonlinear manifold reduced order model , 2020, ArXiv.

[77]  R. Zanella,et al.  Two- and three-dimensional simulations of Rayleigh–Taylor instabilities using a coupled Cahn–Hilliard/Navier–Stokes model , 2020, 2012.06298.

[78]  Min Wang,et al.  Generalized multiscale multicontinuum model for fractured vuggy carbonate reservoirs , 2018, J. Comput. Appl. Math..

[79]  G. Rozza,et al.  On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis , 2020, Computers & Fluids.

[80]  Youngsoo Choi,et al.  Domain-decomposition least-squares Petrov-Galerkin (DD-LSPG) nonlinear model reduction , 2020, ArXiv.

[81]  Changhong Mou,et al.  Data-Driven Variational Multiscale Reduced Order Models , 2020, ArXiv.

[82]  Benjamin Peherstorfer,et al.  Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling , 2018, SIAM J. Sci. Comput..

[83]  G. Welper,et al.  Transformed Snapshot Interpolation with High Resolution Transforms , 2019, SIAM J. Sci. Comput..

[84]  Benjamin Peherstorfer,et al.  Depth separation for reduced deep networks in nonlinear model reduction: Distilling shock waves in nonlinear hyperbolic problems , 2020, ArXiv.

[85]  Yukiko S. Shimizu,et al.  Windowed space-time least-squares Petrov-Galerkin method for nonlinear model order reduction , 2020, ArXiv.

[86]  Daniel A. Tortorelli,et al.  Three-dimensional adaptive mesh refinement in stress-constrained topology optimization , 2020 .

[87]  Kookjin Lee,et al.  Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders , 2018, J. Comput. Phys..

[88]  Robert Anderson,et al.  SNS: A Solution-Based Nonlinear Subspace Method for Time-Dependent Model Order Reduction , 2018, SIAM J. Sci. Comput..

[89]  Charbel Farhat,et al.  Gradient-based constrained optimization using a database of linear reduced-order models , 2015, J. Comput. Phys..

[90]  Daniel M. Tartakovsky,et al.  Lagrangian Dynamic Mode Decomposition for Construction of Reduced-Order Models of Advection-Dominated Phenomena , 2019, J. Comput. Phys..

[91]  Kookjin Lee,et al.  Deep Conservation: A Latent-Dynamics Model for Exact Satisfaction of Physical Conservation Laws , 2019, AAAI.

[92]  Youngsoo Choi,et al.  Efficient space-time reduced order model for linear dynamical systems in Python using less than 120 lines of code , 2020, Mathematics.

[93]  Lei Zhang,et al.  Space-time registration-based model reduction of parameterized one-dimensional hyperbolic PDEs , 2020, ESAIM: Mathematical Modelling and Numerical Analysis.

[94]  Youngsoo Choi,et al.  Component-wise reduced order model lattice-type structure design , 2020, Computer Methods in Applied Mechanics and Engineering.

[95]  Eric J. Parish,et al.  Windowed least-squares model reduction for dynamical systems , 2019, J. Comput. Phys..

[96]  Youngsoo Choi,et al.  Space-time reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems , 2019, J. Comput. Phys..

[97]  S. W. Cheung,et al.  Reduced order models for Lagrangian hydrodynamics , 2021, Computer Methods in Applied Mechanics and Engineering.

[98]  Youngsoo Choi,et al.  A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder , 2020, J. Comput. Phys..