Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways.

[1]  Mi-Hwa Oh,et al.  Complete Genome Sequence of Bifidobacterium longum subsp. longum KACC 91563 , 2011, Journal of bacteriology.

[2]  C. Lebrilla,et al.  The influence of milk oligosaccharides on microbiota of infants: opportunities for formulas. , 2011, Annual review of food science and technology.

[3]  C. Lebrilla,et al.  Development of an annotated library of neutral human milk oligosaccharides. , 2010, Journal of proteome research.

[4]  C. Lebrilla,et al.  Human milk glycobiome and its impact on the infant gastrointestinal microbiota , 2010, Proceedings of the National Academy of Sciences.

[5]  L. T. Angenent,et al.  Succession of microbial consortia in the developing infant gut microbiome , 2010, Proceedings of the National Academy of Sciences.

[6]  D. Mills,et al.  Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. , 2010, Trends in microbiology.

[7]  J. Sonnenburg,et al.  Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Induced Microbiota Alterations , 2010, Cell.

[8]  John W. Froehlich,et al.  Consumption of human milk oligosaccharides by gut-related microbes. , 2010, Journal of agricultural and food chemistry.

[9]  Howard Ochman,et al.  Comparative Metagenomics and Population Dynamics of the Gut Microbiota in Mother and Infant , 2010, Genome biology and evolution.

[10]  M. Malamy,et al.  Sialic Acid (N-Acetyl Neuraminic Acid) Utilization by Bacteroides fragilis Requires a Novel N-Acetyl Mannosamine Epimerase , 2009, Journal of bacteriology.

[11]  I. Adlerberth,et al.  Establishment of the gut microbiota in Western infants , 2009, Acta paediatrica.

[12]  J. Chapman,et al.  The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome , 2008, Proceedings of the National Academy of Sciences.

[13]  J. Gordon,et al.  Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. , 2008, Cell host & microbe.

[14]  C. Lebrilla,et al.  Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. , 2007, Journal of agricultural and food chemistry.

[15]  Daniel B. DiGiulio,et al.  Development of the Human Infant Intestinal Microbiota , 2007, PLoS biology.

[16]  O. Gabrielli,et al.  Prebiotics in human milk: a review. , 2006, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver.

[17]  J. Gordon,et al.  Functional Genomic and Metabolic Studies of the Adaptations of a Prominent Adult Human Gut Symbiont, Bacteroides thetaiotaomicron, to the Suckling Period* , 2006, Journal of Biological Chemistry.

[18]  C. Lebrilla,et al.  In Vitro Fermentation of Breast Milk Oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri , 2006, Applied and Environmental Microbiology.

[19]  J. Knol,et al.  Quantitative Real-Time PCR Analysis of Fecal Lactobacillus Species in Infants Receiving a Prebiotic Infant Formula , 2006, Applied and Environmental Microbiology.

[20]  Robert Tibshirani,et al.  A simple method for assessing sample sizes in microarray experiments , 2006, BMC Bioinformatics.

[21]  S. Domino,et al.  Gastrointestinal mucins of Fut2-null mice lack terminal fucosylation without affecting colonization by Candida albicans. , 2005, Glycobiology.

[22]  Benjamin P. Westover,et al.  Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont , 2005, Science.

[23]  D. Newburg Oligosaccharides and glycoconjugates in human milk: Their role in host defense , 1996, Journal of Mammary Gland Biology and Neoplasia.

[24]  J. Michalski,et al.  Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. , 2004, The Biochemical journal.

[25]  J. Michalski,et al.  Evidence of Regio-specific Glycosylation in Human Intestinal Mucins , 2003, Journal of Biological Chemistry.

[26]  J. Michalski,et al.  Microscale analysis of mucin‐type O‐glycans by a coordinated fluorophore‐assisted carbohydrate electrophoresis and mass spectrometry approach , 2003, Electrophoresis.

[27]  S. Domino,et al.  Intestinal mucins from cystic fibrosis mice show increased fucosylation due to an induced Fucalpha1-2 glycosyltransferase. , 2002, The Biochemical journal.

[28]  J. Gordon,et al.  How host-microbial interactions shape the nutrient environment of the mammalian intestine. , 2002, Annual review of nutrition.

[29]  G. Sawatzki,et al.  Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. , 2000, The American journal of clinical nutrition.

[30]  N. Karlsson,et al.  Glycosylation differences between pig gastric mucin populations: a comparative study of the neutral oligosaccharides using mass spectrometry. , 1997, The Biochemical journal.

[31]  V. Rotimi,et al.  Bacteroides species in the normal neonatal faecal flora , 1981, Journal of Hygiene.