The Diameter of Sparse Random Graphs

In this paper we study the diameter of the random graph G(n, p), i.e., the largest finite distance between two vertices, for a wide range of functions p = p(n). For p = λ/n with λ > 1 constant we give a simple proof of an essentially best possible result, with an Op(1) additive correction term. Using similar techniques, we establish two-point concentration in the case that np → ∞. For p =(1 + e)/n with e → 0, we obtain a corresponding result that applies all the way down to the scaling window of the phase transition, with an Op(1/e) additive correction term whose (appropriately scaled) limiting distribution we describe. Combined with earlier results, our new results complete the determination of the diameter of the random graph G(n, p) to an accuracy of the order of its standard deviation (or better), for all functions p = p(n). Throughout we use branching process methods, rather than the more common approach of separate analysis of the 2-core and the trees attached to it.

[1]  Fan Chung Graham,et al.  The Diameter of Sparse Random Graphs , 2001, Adv. Appl. Math..

[2]  N. Wormald Models of random regular graphs , 2010 .

[3]  Béla Bollobás,et al.  Random Graphs , 1985 .

[4]  Fan Chung Graham,et al.  The Average Distance in a Random Graph with Given Expected Degrees , 2004, Internet Math..

[5]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Yuval Peres,et al.  Diameters in Supercritical Random Graphs Via First Passage Percolation , 2009, Combinatorics, Probability and Computing.

[7]  Remco van der Hofstad,et al.  Distances in Random Graphs with Finite Mean and Infinite Variance Degrees , 2005, math/0502581.

[8]  Béla Bollobás,et al.  Handbook of large-scale random networks , 2008 .

[9]  Béla Bollobás,et al.  Random Graphs and Branching Processes , 2008 .

[10]  Vijaya Ramachandran,et al.  The diameter of sparse random graphs , 2007, Random Struct. Algorithms.

[11]  Remco van der Hofstad,et al.  Distances in random graphs with infinite mean degrees , 2004, math/0407091.

[12]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[13]  Tomasz Luczak,et al.  Cycles in a Random Graph Near the Critical Point , 1991, Random Struct. Algorithms.

[14]  Tomasz Luczak,et al.  Component Behavior Near the Critical Point of the Random Graph Process , 1990, Random Struct. Algorithms.

[15]  Piet Van Mieghem,et al.  Distances in random graphs with finite variance degrees , 2005, Random Struct. Algorithms.

[16]  F. Chung,et al.  The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  N. Wormald,et al.  Models of the , 2010 .

[18]  Piet Van Mieghem,et al.  Three-query PCPs with perfect completeness over non-Boolean domains , 2005 .

[19]  Mikko Alava,et al.  Branching Processes , 2009, Encyclopedia of Complexity and Systems Science.

[20]  B. Bollobás The evolution of random graphs , 1984 .

[21]  Tomasz Luczak Random trees and random graphs , 1998, Random Struct. Algorithms.

[22]  Béla Bollobás,et al.  The Diameter of Random Graphs , 1981 .

[23]  Béla Bollobás,et al.  The Diameter of a Cycle Plus a Random Matching , 1988, SIAM J. Discret. Math..

[24]  Béla Bollobás,et al.  The Diameter of a Scale-Free Random Graph , 2004, Comb..

[25]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[26]  Tomasz Łuczak,et al.  Random trees and random graphs , 1998 .

[27]  L. Addario-Berry,et al.  The continuum limit of critical random graphs , 2009, 0903.4730.

[28]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[29]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[30]  Béla Bollobás,et al.  The diameter of random regular graphs , 1982, Comb..

[31]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[32]  H. Kesten,et al.  Inequalities with applications to percolation and reliability , 1985 .

[33]  Yuval Peres,et al.  Anatomy of a young giant component in the random graph , 2009, Random Struct. Algorithms.

[34]  Nicholas C. Wormald,et al.  Counting connected graphs inside-out , 2005, J. Comb. Theory, Ser. B.

[35]  John D. Lamb,et al.  Surveys in combinatorics, 1999 , 1999 .

[36]  S. Janson On concentration of probability , 2000 .

[37]  David Reimer,et al.  Proof of the Van den Berg–Kesten Conjecture , 2000, Combinatorics, Probability and Computing.

[38]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[39]  Tomasz Łuczak Component behavior near the critical point of the random graph process , 1990 .

[40]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.

[41]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[42]  Y. Peres,et al.  Critical random graphs: Diameter and mixing time , 2007, math/0701316.