An Investigation of a Linguistic Perceptron in a Nonlinear Decision Boundary Problem

We have developed a linguistic perceptron (LP) to deal with the problem in pattern recognition where inputs are uncertain. This algorithm is based on the extension principle and the decomposition theorem. Several synthetic data sets are used to illustrate the behavior of this linguistic perceptron in linearly separable, nonlinearly separable and nonseparable situations. We also compare the results from the linguistic perceptron with that from the regular perceptron.

[1]  F. S. Wong,et al.  Fuzzy weighted averages and implementation of the extension principle , 1987 .

[2]  Hahn-Ming Lee,et al.  A neural network architecture for classification of fuzzy inputs , 1994 .

[3]  Ivan Kramosil,et al.  Fuzzy metrics and statistical metric spaces , 1975, Kybernetika.

[4]  Sylvie Galichet,et al.  FUZZY CONTROL WITH NON-PRECISE INPUTS , 1995 .

[5]  W. Dong,et al.  Fuzzy computations in risk and decision analysis , 1985 .

[6]  Osmo Kaleva,et al.  On fuzzy metric spaces , 1984 .

[7]  Hahn-Ming Lee,et al.  Fuzzy pocket algorithm: a generalized pocket algorithm for classification of fuzzy inputs , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[8]  M. Mares,et al.  Computation Over Fuzzy Quantities , 1994 .

[9]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[10]  Jyh-Yeong Chang,et al.  Fuzzy perceptron learning and its application to classifiers with numerical data and linguistic knowledge , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[11]  Ronald R. Yager,et al.  Modeling fuzzy logic controllers having noisy inputs , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[12]  Paul D. Gader,et al.  Generalized Choquet fuzzy integral fusion , 2002, Inf. Fusion.

[13]  P. Sneath The application of computers to taxonomy. , 1957, Journal of general microbiology.

[14]  Rainer Palm,et al.  Fuzzy inputs , 1994 .

[15]  Jyh-Yeong Chang,et al.  Fuzzy perceptron neural networks for classifiers with numerical data and linguistic rules as inputs , 2000, IEEE Trans. Fuzzy Syst..

[16]  Hisao Ishibuchi,et al.  Neural networks that learn from fuzzy if-then rules , 1993, IEEE Trans. Fuzzy Syst..

[17]  James J. Buckley,et al.  Fuzzy neural network with fuzzy signals and weights , 1993, Int. J. Intell. Syst..

[18]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[19]  John N. Mordeson,et al.  Fuzzy Mathematics - An Introduction for Engineers and Scientists , 2001, Studies in Fuzziness and Soft Computing.

[20]  D. Dubois,et al.  Efficient inference procedures with fuzzy inputs , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[21]  Yuan Yan Chen,et al.  Fuzzy analysis of statistical evidence , 2000, IEEE Trans. Fuzzy Syst..

[22]  James M. Keller,et al.  Analysis and efficient implementation of a linguistic fuzzy c-means , 2002, IEEE Trans. Fuzzy Syst..

[23]  Hideo Tanaka,et al.  An architecture of neural networks for input vectors of fuzzy numbers , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[24]  Paul D. Gader,et al.  New fuzzy set tools to aid in predictive sensor fusion , 2000, Defense, Security, and Sensing.

[25]  Sansanee Auephanwiriyaku A Preliminary Investigation of a Linguistic Perceptron , 2005, Australian Conference on Artificial Intelligence.

[26]  Madan M. Gupta,et al.  On fuzzy neuron models , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[27]  H. Ishibuchi,et al.  A learning algorithm of fuzzy neural networks with triangular fuzzy weights , 1995 .

[28]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[29]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[30]  James M. Keller,et al.  Linguistic classifiers with application to management questionnaires , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).