Algebraic Solution of Tropical Polynomial Optimization Problems

We consider constrained optimization problems defined in the tropical algebra setting on a linearly ordered, algebraically complete (radicable) idempotent semifield (a semiring with idempotent addition and invertible multiplication). The problems are to minimize the objective functions given by tropical analogues of multivariate Puiseux polynomials, subject to box constraints on the variables. A technique for variable elimination is presented that converts the original optimization problem to a new one in which one variable is removed and the box constraint for this variable is modified. The novel approach may be thought of as an extension of the Fourier–Motzkin elimination method for systems of linear inequalities in ordered fields to the issue of polynomial optimization in ordered tropical semifields. We use this technique to develop a procedure to solve the problem in a finite number of iterations. The procedure includes two phases: backward elimination and forward substitution of variables. We describe the main steps of the procedure, discuss its computational complexity and present numerical examples.

[1]  Thomas Markwig,et al.  A Field of Generalised Puiseux Series for Tropical Geometry , 2007, 0709.3784.

[2]  J. Golan Semirings and Affine Equations over Them: Theory and Applications , 2003 .

[3]  Nikolai Krivulin,et al.  Algebraic solution of weighted minimax single-facility constrained location problems , 2018, RAMiCS.

[4]  Dima Grigoriev Tropical Newton-Puiseux Polynomials , 2018, CASC.

[5]  H. Raiffa,et al.  3. The Double Description Method , 1953 .

[6]  V. Kolokoltsov,et al.  Idempotent Analysis and Its Applications , 1997 .

[7]  Dong Li Morphological template decomposition with max-polynomials , 2004, Journal of Mathematical Imaging and Vision.

[8]  Dima Grigoriev,et al.  Tropical Cryptography , 2013, IACR Cryptol. ePrint Arch..

[9]  Michael Joswig,et al.  Tropical Computations in polymake , 2016, 1612.02581.

[10]  Bart De Schutter,et al.  A method to find all solutions of a system of multivariate polynomial equalities and inequalities in the max algebra , 1996, Discret. Event Dyn. Syst..

[11]  L. L. Dines Systems of Linear Inequalities , 1919 .

[12]  Raymond Cuninghame-Green,et al.  An algebra for piecewise-linear minimax problems , 1980, Discret. Appl. Math..

[13]  Michel Minoux,et al.  Graphs, dioids and semirings : new models and algorithms , 2008 .

[14]  Tropical conics for the layman , 2007, math/0702143.

[15]  Michael Brückner,et al.  Double Description Method , 2013 .

[16]  Nikolai Krivulin,et al.  Using parameter elimination to solve discrete linear Chebyshev approximation problems , 2020, Mathematics.

[17]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[18]  Ricardo D. Katz,et al.  Tropical linear-fractional programming and parametric mean payoff games , 2011, J. Symb. Comput..

[19]  K. Zimmermann Optimization problems with unimodal functions in max-separabal constraints , 1992 .

[20]  Dima Grigoriev,et al.  Tropical cryptography II: Extensions by homomorphisms , 2018, IACR Cryptol. ePrint Arch..

[21]  R. A. Cuninghame-Green,et al.  Using Fields for Semiring Computations , 1984 .

[22]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[23]  Axel Legay,et al.  Tropical Fourier-Motzkin elimination, with an application to real-time verification , 2013, Int. J. Algebra Comput..

[24]  Leonid Khachiyan Fourier-Motzkin Elimination Method , 2009, Encyclopedia of Optimization.

[25]  Helmut Seidl,et al.  Approximative Methods for Monotone Systems of Min-Max-Polynomial Equations , 2008, ICALP.

[26]  Andreas Gathmann,et al.  Tropical algebraic geometry , 2006 .

[27]  Nikolai Krivulin,et al.  Using tropical optimization to solve constrained minimax single-facility location problems with rectilinear distance , 2015, Computational Management Science.

[28]  Eric Goubault,et al.  The tropical double description method , 2010, STACS.

[29]  N. Krivulin,et al.  Using tropical optimization to solve minimax location problems with a rectilinear metric on the line , 2016, Vestnik St. Petersburg University: Mathematics.

[30]  J. Hook,et al.  Max-plus singular values , 2015 .

[31]  R. A. Cuninghame-Green,et al.  Maxpolynomial equations , 1995, Fuzzy Sets Syst..

[32]  Nikolai Krivulin,et al.  Tropical implementation of the Analytical Hierarchy Process decision method , 2019, Fuzzy Sets Syst..

[33]  G. Ziegler Lectures on Polytopes , 1994 .

[34]  Nikolai Krivulin,et al.  Using tropical optimization techniques in bi-criteria decision problems , 2018, Computational Management Science.