Utilizing high performance computing for chemistry: parallel computational chemistry.

Parallel hardware has become readily available to the computational chemistry research community. This perspective will review the current state of parallel computational chemistry software utilizing high-performance parallel computing platforms. Hardware and software trends and their effect on quantum chemistry methodologies, algorithms, and software development will also be discussed.

[1]  Werner Kutzelnigg,et al.  How many‐body perturbation theory (MBPT) has changed quantum chemistry , 2009 .

[2]  Jan Almlöf,et al.  Laplace transform techniques in Mo/ller–Plesset perturbation theory , 1992 .

[3]  Raymond A. Bair,et al.  Quantum chemistry with an attached processor , 1984 .

[4]  Yixiang Cao,et al.  Correlated ab Initio Electronic Structure Calculations for Large Molecules , 1999 .

[5]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[6]  Rodney J Bartlett,et al.  A natural linear scaling coupled-cluster method. , 2004, The Journal of chemical physics.

[7]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[8]  Mihály Kállay,et al.  Higher excitations in coupled-cluster theory , 2001 .

[9]  Rick Stevens,et al.  Toward high‐performance computational chemistry: II. A scalable self‐consistent field program , 1996 .

[10]  Matt Challacombe,et al.  Linear scaling computation of the Fock matrix. V. Hierarchical Cubature for numerical integration of the exchange-correlation matrix , 2000 .

[11]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[12]  Karol Kowalski,et al.  The active-space equation-of-motion coupled-cluster methods for excited electronic states: Full EOMCCSDt , 2001 .

[13]  Martin Head-Gordon,et al.  Noniterative local second order Mo/ller–Plesset theory: Convergence with local correlation space , 1998 .

[14]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[15]  Klaus Ruedenberg,et al.  Potential energy surfaces near intersections , 1991 .

[16]  Alistair P. Rendell,et al.  Quantum chemistry on parallel computer architectures: coupled-cluster theory applied to the bending potential of fulminic acid , 1992 .

[17]  David E. Bernholdt,et al.  High performance computational chemistry: An overview of NWChem a distributed parallel application , 2000 .

[18]  Robert J. Harrison,et al.  Toward high‐performance computational chemistry: I. Scalable Fock matrix construction algorithms , 1996 .

[19]  Thomas Müller,et al.  Large-scale parallel uncontracted multireference-averaged quadratic coupled cluster: the ground state of the chromium dimer revisited. , 2009, The journal of physical chemistry. A.

[20]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[21]  J. Olsen,et al.  Passing the one-billion limit in full configuration-interaction (FCI) calculations , 1990 .

[22]  Lucas Visscher,et al.  The generalized active space concept for the relativistic treatment of electron correlation. III. Large-scale configuration interaction and multiconfiguration self-consistent-field four-component methods with application to UO2. , 2006, The Journal of chemical physics.

[23]  Kimihiko Hirao,et al.  Semidirect parallel self-consistent field: the load balancing problem in the input/output intensive self-consistent field iterations , 2003 .

[24]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[25]  Alessandro Curioni,et al.  New advances in chemistry and materials science with CPMD and parallel computing , 2000, Parallel Comput..

[26]  John D. Watts,et al.  Economical triple excitation equation-of-motion coupled-cluster methods for excitation energies , 1995 .

[27]  Alistair P. Rendell,et al.  A parallel vectorized implementation of triple excitations in CCSD(T): application to the binding energies of the AlH3, AlH2F, AlHF2 and AlF3 dimers , 1991 .

[28]  A. Rendell Diagonalization-free SCF , 1994 .

[29]  Josef Paldus,et al.  Automation of the implementation of spin‐adapted open‐shell coupled‐cluster theories relying on the unitary group formalism , 1994 .

[30]  Robert J. Buenker,et al.  Energy extrapolation in CI calculations , 1975 .

[31]  F. Weigend,et al.  RI-MP2: first derivatives and global consistency , 1997 .

[32]  Robert J. Harrison,et al.  Portable tools and applications for parallel computers , 1991 .

[33]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[34]  Marvin L. Cohen,et al.  Theory of ab initio pseudopotential calculations , 1982 .

[35]  Chris-Kriton Skylaris,et al.  Introducing ONETEP: linear-scaling density functional simulations on parallel computers. , 2005, The Journal of chemical physics.

[36]  Tomasz Janowski,et al.  Quantum chemistry in parallel with PQS , 2009, J. Comput. Chem..

[37]  Jürgen Gauss,et al.  Parallel Calculation of CCSD and CCSD(T) Analytic First and Second Derivatives. , 2008, Journal of chemical theory and computation.

[38]  Trygve Helgaker,et al.  Excitation energies from the coupled cluster singles and doubles linear response function (CCSDLR). Applications to Be, CH+, CO, and H2O , 1990 .

[39]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[40]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[41]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[42]  Hans-Joachim Werner,et al.  A quadratically convergent MCSCF method for the simultaneous optimization of several states , 1981 .

[43]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[44]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[45]  J. Hinze,et al.  The Unitary group for the evaluation of electronic energy matrix elements , 1981 .

[46]  So Hirata,et al.  Perturbative corrections to coupled-cluster and equation-of-motion coupled-cluster energies: A determinantal analysis , 2001 .

[47]  Sriram Krishnamoorthy,et al.  Active-space completely-renormalized equation-of-motion coupled-cluster formalism: Excited-state studies of green fluorescent protein, free-base porphyrin, and oligoporphyrin dimer. , 2010, The Journal of chemical physics.

[48]  William Gropp,et al.  Mpi---the complete reference: volume 1 , 1998 .

[49]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[50]  Roberto Ansaloni,et al.  A parallel Full-CI algorithm ✩ , 2000 .

[51]  Mark S. Gordon,et al.  The Parallel Implementation of a Full Configuration Interaction Program , 2003 .

[52]  W. Goddard,et al.  Generalized valence bond description of the low-lying states of formaldehyde , 1975 .

[53]  Tomasz Janowski,et al.  Array files for computational chemistry: MP2 energies , 2007, J. Comput. Chem..

[54]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[55]  Trygve Helgaker,et al.  The integral‐direct coupled cluster singles and doubles model , 1996 .

[56]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .

[57]  Hamann Generalized norm-conserving pseudopotentials. , 1989, Physical review. B, Condensed matter.

[58]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[59]  David E. Bernholdt,et al.  Fitting basis sets for the RI-MP2 approximate second-order many-body perturbation theory method , 1998 .

[60]  Michel Dupuis,et al.  Parallel computation of the Moller–Plesset second‐order contribution to the electronic correlation energy , 1988 .

[61]  S. Knecht,et al.  Large-scale parallel configuration interaction. I. Nonrelativistic and scalar-relativistic general active space implementation with application to (Rb-Ba)+. , 2008, The Journal of chemical physics.

[62]  Guntram Rauhut,et al.  Integral transformation with low‐order scaling for large local second‐order Møller–Plesset calculations , 1998 .

[63]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[64]  S. Hirata Tensor Contraction Engine: Abstraction and Automated Parallel Implementation of Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation Theories , 2003 .

[65]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[66]  Mark S. Gordon,et al.  The Distributed Data Interface in GAMESS , 2000 .

[67]  Roland Lindh,et al.  Density fitting with auxiliary basis sets from Cholesky decompositions , 2009 .

[68]  Stefano Evangelisti,et al.  Benchmark full-CI calculation on C2H2: comparison with (SC)2-CI and other truncated-CI approaches , 1998 .

[69]  Hideo Sekino,et al.  A linear response, coupled‐cluster theory for excitation energy , 1984 .

[70]  Curtis L Janssen,et al.  Local Møller-Plesset Perturbation Theory:  A Massively Parallel Algorithm. , 2007, Journal of chemical theory and computation.

[71]  J. C. Phillips,et al.  Energy-Band Interpolation Scheme Based on a Pseudopotential , 1958 .

[72]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[73]  Marcel Nooijen,et al.  Towards a general multireference coupled cluster method: automated implementation of open-shell CCSD method for doublet states , 2001 .

[74]  R. Ahlrichs,et al.  Performance of parallel TURBOMOLE for density functional calculations , 1998, J. Comput. Chem..

[75]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[76]  Gd Fletcher,et al.  A parallel multi-configuration self-consistent field algorithm , 2007 .

[77]  R J Bartlett,et al.  Parallel implementation of electronic structure energy, gradient, and Hessian calculations. , 2008, The Journal of chemical physics.

[78]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[79]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[80]  Piotr Jankowski,et al.  Unitary group based open-shell coupled cluster theory: Application to van der Waals interactions of high-spin systems , 1999 .

[81]  Frederick R. Manby,et al.  Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals , 2003 .

[82]  Ian J. Bush,et al.  The GAMESS-UK electronic structure package: algorithms, developments and applications , 2005 .

[83]  L. Kronik,et al.  Orbital-dependent density functionals: Theory and applications , 2008 .

[84]  Henry F. Schaefer,et al.  A new implementation of the full CCSDT model for molecular electronic structure , 1988 .

[85]  Poul Jørgensen,et al.  Perturbative triple excitation corrections to coupled cluster singles and doubles excitation energies , 1996 .

[86]  Mark S. Gordon,et al.  The distributed data SCF , 2002 .

[87]  Robert J. Buenker,et al.  A new table-direct configuration interaction method for the evaluation of Hamiltonian matrix elements in a basis of linear combinations of spin-adapted functions , 1995 .

[88]  Jan Almlöf,et al.  Elimination of energy denominators in Møller—Plesset perturbation theory by a Laplace transform approach , 1991 .

[89]  Karol Kowalski,et al.  Coupled cluster calculations for static and dynamic polarizabilities of C60. , 2008, The Journal of chemical physics.

[90]  Peter M. W. Gill,et al.  Molecular integrals Over Gaussian Basis Functions , 1994 .

[91]  Tomomi Shimazaki,et al.  Electronic Structure Calculations under Periodic Boundary Conditions Based on the Gaussian and Fourier Transform (GFT) Method. , 2009, Journal of chemical theory and computation.

[92]  K. Kowalski Nested variant of the method of moments of coupled cluster equations for vertical excitation energies and excited-state potential energy surfaces. , 2009, The Journal of chemical physics.

[93]  Stephen Wilson,et al.  Performance of IBM RISC System / 6000 Workstation Clusters in a Quantum Chemical Application , 1993, Parallel Comput..

[94]  Thomas Müller,et al.  High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin–orbit CI and parallel CI density , 2001 .

[95]  Kiyoshi Tanaka,et al.  A graphical symmetric group approach for a spin adapted full configuration interaction: partitioning of a configuration graph into sets of closed-shell and open-shell graphs , 2007 .

[96]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[97]  Peter R. Taylor,et al.  Strategies for obtaining the maximum performance from current supercomputers , 1987 .

[98]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[99]  Shawn T. Brown,et al.  Advances in methods and algorithms in a modern quantum chemistry program package. , 2006, Physical chemistry chemical physics : PCCP.

[100]  Curtis L. Janssen,et al.  The automated solution of second quantization equations with applications to the coupled cluster approach , 1991 .

[101]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[102]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[103]  Hannes Jónsson,et al.  A parallel implementation of the Car-Parrinello method by orbital decomposition , 1994 .

[104]  R. Bartlett,et al.  Recursive intermediate factorization and complete computational linearization of the coupled-cluster single, double, triple, and quadruple excitation equations , 1991 .

[105]  Philippe Y. Ayala,et al.  Linear scaling coupled cluster and perturbation theories in the atomic orbital basis , 1999 .

[106]  Michael C. Zerner,et al.  The linked singles and doubles model: An approximate theory of electron correlation based on the coupled‐cluster ansatz , 1982 .

[107]  Robert W. Numrich,et al.  Co-arrays in the next Fortran Standard , 2005, FORF.

[108]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[109]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[110]  Martin Head-Gordon,et al.  Closely approximating second-order Mo/ller–Plesset perturbation theory with a local triatomics in molecules model , 2000 .

[111]  Lemin Li,et al.  Parallelization of MRCI based on hole‐particle symmetry , 2005, J. Comput. Chem..

[112]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[113]  D. Yarkony,et al.  On the evaluation of nonadiabatic coupling matrix elements using SA‐MCSCF/CI wave functions and analytic gradient methods. I , 1984 .

[114]  Josef Paldus,et al.  Correlation Problems in Atomic and Molecular Systems. IV. Extended Coupled-Pair Many-Electron Theory and Its Application to the B H 3 Molecule , 1972 .

[115]  Mark S. Gordon,et al.  A Novel Approach to Parallel Coupled Cluster Calculations: Combining Distributed and Shared Memory Techniques for Modern Cluster Based Systems , 2007 .

[116]  D. Bernholdt,et al.  Large-scale correlated electronic structure calculations: the RI-MP2 method on parallel computers , 1996 .

[117]  So Hirata,et al.  Symbolic Algebra in Quantum Chemistry , 2006 .

[118]  Nicholas Carriero,et al.  How to write parallel programs - a first course , 1990 .

[119]  Richard J. Sahulka,et al.  IBM Parallel FORTRAN , 1988, IBM Syst. J..

[120]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[121]  Michio Katouda,et al.  Efficient parallel algorithm of second‐order Møller–Plesset perturbation theory with resolution‐of‐identity approximation (RI‐MP2) , 2009 .

[122]  Karol Kowalski,et al.  Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches , 2002 .

[123]  Mark S. Gordon,et al.  A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) , 2004, J. Comput. Chem..

[124]  S. Knecht,et al.  Large-scale parallel configuration interaction. II. Two- and four-component double-group general active space implementation with application to BiH. , 2010, The Journal of chemical physics.

[125]  John D. Watts,et al.  Iterative and non-iterative triple excitation corrections in coupled-cluster methods for excited electronic states: the EOM-CCSDT-3 and EOM-CCSD(T̃) methods , 1996 .

[126]  Andrew J. May,et al.  Parallel programming interface for distributed data , 2009, Comput. Phys. Commun..

[127]  Robert J. Harrison,et al.  Parallel internally contracted multireference configuration interaction , 1998 .

[128]  Alan Randall Tackett,et al.  Orthogonal polynomial projectors for the projector augmented wave method of electronic structure calculations , 1998 .

[129]  Kazuya Ishimura,et al.  A new parallel algorithm of MP2 energy calculations , 2006, J. Comput. Chem..

[130]  Nelson,et al.  Plane-wave electronic-structure calculations on a parallel supercomputer. , 1993, Physical review. B, Condensed matter.

[131]  So Hirata,et al.  Second- and third-order triples and quadruples corrections to coupled-cluster singles and doubles in the ground and excited states. , 2007, The Journal of chemical physics.

[132]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[133]  M Pitoňák,et al.  Convergence of the CCSD(T) Correction Term for the Stacked Complex Methyl Adenine-Methyl Thymine: Comparison with Lower-Cost Alternatives. , 2009, Journal of chemical theory and computation.

[134]  Peter D. Haynes,et al.  Preconditioned conjugate gradient method for the sparse generalized eigenvalue problem in electronic structure calculations , 2001 .

[135]  Edward T. Seidl,et al.  Parallel direct implementations of second‐order perturbation theories , 1995, J. Comput. Chem..

[136]  Robert J. Harrison,et al.  Approaches to large‐scale parallel self‐consistent field calculations , 1995, J. Comput. Chem..

[137]  Alistair P. Rendell,et al.  Evaluation of the contribution from triply excited intermediates to the fourth-order perturbation theory energy on Intel distributed memory supercomputers , 1993 .

[138]  Thomas R. Furlani,et al.  Parallelization of SCF calculations within Q-Chem , 2000 .

[139]  Peter Pulay,et al.  A low-scaling method for second order Møller–Plesset calculations , 2001 .

[140]  Robert A. van de Geijn,et al.  SUMMA: Scalable Universal Matrix Multiplication Algorithm , 1995 .

[141]  Alistair P. Rendell,et al.  The restricted active space self-consistent-field method, implemented with a split graph unitary group approach , 1990 .

[142]  Russell M. Pitzer,et al.  A progress report on the status of the COLUMBUS MRCI program system , 1988 .

[143]  Russell M. Pitzer,et al.  Spin-Orbit Configuration Interaction Using the Graphical Unitary Group Approach and Relativistic Core Potential and Spin-Orbit Operators , 1999 .

[144]  Mark S. Gordon,et al.  Coupled cluster algorithms for networks of shared memory parallel processors , 2007, Comput. Phys. Commun..

[145]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix , 1997 .

[146]  Jörg Kussmann,et al.  Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria. , 2009, The Journal of chemical physics.

[147]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[148]  M. Valiev,et al.  The Projector-Augmented Plane Wave Method Applied to Molecular Bonding , 1999 .

[149]  T. Daniel Crawford,et al.  A new spin-restricted triple excitation correction for coupled cluster theory , 1997 .

[150]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[151]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field Implementation. , 2009, Journal of chemical theory and computation.

[152]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[153]  Mark S. Gordon,et al.  A parallel distributed data CPHF algorithm for analytic Hessians , 2007, J. Comput. Chem..

[154]  Arnim Hellweg,et al.  Distributed memory parallel implementation of energies and gradients for second-order Møller-Plesset perturbation theory with the resolution-of-the-identity approximation. , 2006, Physical chemistry chemical physics : PCCP.

[155]  R. N. Diffenderfer,et al.  Use of the state-averaged MCSCF procedure: application to radiative transitions in magnesium oxide , 1982 .

[156]  Karol Kowalski,et al.  New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states. , 2004, The Journal of chemical physics.

[157]  Włodzisław Duch,et al.  GRMS or Graphical Representation of Model Spaces , 1986 .

[158]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[159]  Yihan Shao,et al.  Accelerating resolution-of-the-identity second-order Møller-Plesset quantum chemistry calculations with graphical processing units. , 2008, The journal of physical chemistry. A.

[160]  Curtis L. Janssen,et al.  Multi-threading : A new dimension to massively parallel scientific computation , 2000 .

[161]  Hans Lischka,et al.  A general multireference configuration interaction gradient program , 1992 .

[162]  FRANCESCO AQUILANTE,et al.  MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..

[163]  Martin Head-Gordon,et al.  Non-iterative local second order Møller–Plesset theory , 1998 .

[164]  Andrew Canning,et al.  Scaling first-principles plane-wave codes to thousands of processors , 2005, Comput. Phys. Commun..

[165]  Christian Ochsenfeld,et al.  Rigorous integral screening for electron correlation methods. , 2005, The Journal of chemical physics.

[166]  David E. Bernholdt,et al.  Orbital‐invariant second‐order many‐body perturbation theory on parallel computers: An approach for large molecules , 1995 .

[167]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[168]  H. Monkhorst,et al.  Some aspects of the time-dependent coupled-cluster approach to dynamic response functions , 1983 .

[169]  Holger Dachsel,et al.  An efficient data compression method for the Davidson subspace diagonalization scheme , 1995 .

[170]  Georg Hetzer,et al.  Low-order scaling local correlation methods II: Splitting the Coulomb operator in linear scaling local second-order Møller–Plesset perturbation theory , 2000 .

[171]  François Gygi,et al.  Architecture of Qbox: A scalable first-principles molecular dynamics code , 2008, IBM J. Res. Dev..

[172]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[173]  William J. Dally,et al.  Principles and Practices of Interconnection Networks , 2004 .

[174]  Thomas R. Furlani,et al.  Implementation of a parallel direct SCF algorithm on distributed memory computers , 1995, J. Comput. Chem..

[175]  Nicholas C. Handy,et al.  Multi-root configuration interaction calculations , 1980 .

[176]  Michel Dupuis,et al.  Parallel computation of the MP2 energy on distributed memory computers , 1995, J. Comput. Chem..

[177]  Curtis L. Janssen,et al.  Parallel Computing in Quantum Chemistry , 2008 .

[178]  Eric J. Bylaska,et al.  NWChem for Materials Science , 2003 .

[179]  Eric J. Bylaska,et al.  Parallel Implementation of the Projector Augmented Plane Wave Method for Charged Systems , 2002 .

[180]  Christof Hättig,et al.  Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr , 2005 .

[181]  Gustavo E. Scuseria,et al.  Converging self-consistent field equations in quantum chemistry – recent achievements and remaining challenges , 2007 .

[182]  Rodney J Bartlett,et al.  Parallel implementation of the equation-of-motion coupled-cluster singles and doubles method and application for radical adducts of cytosine. , 2009, The Journal of chemical physics.

[183]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation. , 2008, Journal of chemical theory and computation.

[184]  David R. Bowler,et al.  Recent progress with large‐scale ab initio calculations: the CONQUEST code , 2006 .

[185]  M. L. Cohen,et al.  Ab initio pseudopotential theory , 1982 .

[186]  F. Coester,et al.  Bound states of a many-particle system , 1958 .

[187]  J. Olsen,et al.  Excitation energies of H2O, N2 and C2 in full configuration interaction and coupled cluster theory , 1996 .

[188]  Mark S. Gordon,et al.  DEVELOPMENTS IN PARALLEL ELECTRONIC STRUCTURE THEORY , 2007 .

[189]  Vaidy S. Sunderam,et al.  PVM: A Framework for Parallel Distributed Computing , 1990, Concurr. Pract. Exp..

[190]  Ron L. Shepard,et al.  Reducing I/O costs for the eigenvalue procedure in large‐scale configuration interaction calculations , 2002, J. Comput. Chem..

[191]  Donald C. Comeau,et al.  The equation-of-motion coupled-cluster method. Applications to open- and closed-shell reference states , 1993 .

[192]  Marat Valiev,et al.  Large-scale parallel calculations with combined coupled cluster and molecular mechanics formalism: Excitation energies of zinc–porphyrin in aqueous solution , 2008 .

[193]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[194]  P. Pulay,et al.  Direct inversion in the iterative subspace (DIIS) optimization of open‐shell, excited‐state, and small multiconfiguration SCF wave functions , 1986 .

[195]  Govind,et al.  Total-energy calculations using a gradient-expanded kinetic-energy functional. , 1994, Physical review. B, Condensed matter.

[196]  H. Lischka,et al.  Analytic MRCI gradient for excited states: formalism and application to the n-π* valence- and n-(3s,3p) Rydberg states of formaldehyde , 2002 .

[197]  Robert J. Harrison,et al.  Parallel direct four-index transformations , 1996 .

[198]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[199]  Peter Pulay,et al.  An efficient reformulation of the closed‐shell self‐consistent electron pair theory , 1984 .

[200]  Hans Lischka,et al.  Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. I. Formalism. , 2004, The Journal of chemical physics.

[201]  Alistair P. Rendell,et al.  Distributed data parallel coupled‐cluster algorithm: Application to the 2‐hydroxypyridine/2‐pyridone tautomerism , 1993, J. Comput. Chem..

[202]  Jarek Nieplocha,et al.  Advances, Applications and Performance of the Global Arrays Shared Memory Programming Toolkit , 2006, Int. J. High Perform. Comput. Appl..

[203]  Jon Baker,et al.  An efficient parallel algorithm for the calculation of canonical MP2 energies , 2002, J. Comput. Chem..

[204]  Anna I Krylov,et al.  A noniterative perturbative triples correction for the spin-flipping and spin-conserving equation-of-motion coupled-cluster methods with single and double substitutions. , 2008, The Journal of chemical physics.

[205]  F. Neese,et al.  Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange , 2009 .

[206]  Theresa L Windus,et al.  Thermodynamic properties of the C5, C6, and C8 n-alkanes from ab initio electronic structure theory. , 2005, The journal of physical chemistry. A.

[207]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[208]  Lu J. Sham,et al.  General Theory of Pseudopotentials , 1962 .

[209]  Jukka Saarinen,et al.  ICAP/3090: Parallel Processing for Large-Scale Scientific and Engineering Problems , 1988, IBM Syst. J..

[210]  Lucas Visscher,et al.  RELATIVISTIC QUANTUM-CHEMISTRY - THE MOLFDIR PROGRAM PACKAGE , 1994 .

[211]  Tomasz Janowski,et al.  Efficient Parallel Implementation of the CCSD External Exchange Operator and the Perturbative Triples (T) Energy Calculation. , 2008, Journal of chemical theory and computation.

[212]  Rodney J. Bartlett,et al.  The equation-of-motion coupled-cluster method: Excitation energies of Be and CO , 1989 .

[213]  Roland Lindh,et al.  2MOLCAS as a development platform for quantum chemistry software , 2004 .

[214]  Alistair P. Rendell,et al.  A direct coupled cluster algorithm for massively parallel computers , 1997 .

[215]  Rolf Seeger,et al.  Parallel processing on minicomputers: A powerful tool for quantum chemistry , 1981 .

[216]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[217]  M. Minkoff,et al.  Nonlinear wave function expansions: A progress report , 2007 .

[218]  D. R. Hamann,et al.  Pseudopotentials that work: From H to Pu , 1982 .

[219]  Koji Yasuda,et al.  Accelerating Density Functional Calculations with Graphics Processing Unit. , 2008, Journal of chemical theory and computation.

[220]  Michael J. McGuire,et al.  Recent advances in electronic structure theory: Method of moments of coupled-cluster equations and renormalized coupled-cluster approaches , 2002 .

[221]  Exponential transformation of molecular orbitals , 1994 .

[222]  Roland Lindh,et al.  Accurate ab initio density fitting for multiconfigurational self-consistent field methods. , 2008, The Journal of chemical physics.

[223]  Mike C. Payne,et al.  Large-scale ab initio total energy calculations on parallel computers , 1992 .

[224]  Robert J. Harrison,et al.  An implementation of RI–SCF on parallel computers , 1997 .

[225]  R. Harrison,et al.  AB Initio Molecular Electronic Structure on Parallel Computers , 1994 .