Inversion of k-tridiagonal matrices with Toeplitz structure

In this paper, we consider an inverse problem with the k-tridiagonal Toeplitz matrices. A theoretical result is obtained that under certain assumptions the explicit inverse of a k-tridiagonal Toeplitz matrix can be derived immediately. Two numerical examples are given to demonstrate the validity of our results.

[1]  Alessandro Conflitti Zeros Of Real Symmetric Polynomials , 2006 .

[2]  Vladimir Monov,et al.  A family of symmetric polynomials of the eigenvalues of a matrix , 2008 .

[3]  Moawwad E. A. El-Mikkawy,et al.  A fast algorithm for evaluating n th order tri-diagonal determinants , 2004 .

[4]  Wenchang Chu,et al.  Harmonic number identities and Hermite-Padé approximations to the logarithm function , 2005, J. Approx. Theory.

[5]  Moawwad E. A. El-Mikkawy On a connection between the Pascal, Vandermonde and Stirling matrices--I , 2003, Appl. Math. Comput..

[6]  Predrag S. Stanimirović,et al.  A generalization of Fibonacci and Lucas matrices , 2008, Discret. Appl. Math..

[7]  N. Higham Efficient algorithms for computing the condition number of a tridagonal matrix , 1986 .

[8]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[9]  Sergio Falcon Fibonacci's multiplicative sequence , 2003 .

[10]  Moawwad E. A. El-Mikkawy,et al.  Inversion of general tridiagonal matrices , 2006, Appl. Math. Lett..

[11]  Aivars Lorencs,et al.  Elementary Symmetric Polynomials in Random Variables , 2007 .

[12]  Damian Slota,et al.  On computing the determinants and inverses of some special type of tridiagonal and constant-diagonals matrices , 2007, Appl. Math. Comput..

[13]  Emrah Kilic,et al.  On the Generalized Order-$k$ Fibonacci and Lucas Numbers , 2006 .

[14]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[15]  S. De Marchi Polynomials arising in factoring generalized Vandermonde determinants: an algorithm for computing their coefficients , 2001 .

[16]  Moawwad E. A. El-Mikkawy On the inverse of a general tridiagonal matrix , 2004, Appl. Math. Comput..

[17]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[18]  Emrah Kilic,et al.  Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions , 2008, Appl. Math. Comput..

[19]  Alain Lascoux,et al.  Jacobians of Symmetric Polynomials , 2002 .

[20]  Nicola Galli,et al.  Birth Processes and Symmetric Polynomials , 2001 .

[21]  Péter Major The Limit Behavior of Elementary Symmetric Polynomials of i.i.d. Random Variables When Their Order Tends to Infinity , 1999 .

[22]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[23]  Moawwad E. A. El-Mikkawy Explicit inverse of a generalized Vandermonde matrix , 2003, Appl. Math. Comput..

[24]  Vince Grolmusz Computing Elementary Symmetric Polynomials with a Subpolynomial Number of Multiplications , 2002, SIAM J. Comput..

[25]  Thomas Koshy,et al.  Fibonacci and Lucas Numbers With Applications , 2018 .

[26]  Yongzhi Yang Generalized Leibniz functional matrices and factorizations of some well-known matrices , 2009 .

[27]  Ting-Zhu Huang,et al.  On the inverses of general tridiagonal matrices , 2010 .

[28]  Aynur Yalçiner THE LU FACTORIZATIONS AND DETERMINANTS OF THE K-TRIDIAGONAL MATRICES , 2011 .

[29]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[30]  John R. Stembridge,et al.  A Maple Package for Symmetric Functions , 1995, J. Symb. Comput..

[31]  D. G. Rogers,et al.  Pascal triangles, Catalan numbers and renewal arrays , 1978, Discret. Math..

[32]  Michael Z. Spivey Fibonacci Identities via the Determinant Sum Property , 2006 .

[33]  Erdal Karaduman On determinants of matrices with general Fibonacci numbers entries , 2005, Appl. Math. Comput..

[34]  Victor S. Adamchik,et al.  On Stirling numbers and Euler sums , 1997 .

[35]  Moawwad E. A. El-Mikkawy,et al.  Fast block diagonalization of k-tridiagonal matrices , 2011, Appl. Math. Comput..

[36]  J Wittenburg Inverses of tridiagonal Toeplitz and periodic matrices with applications to mechanics , 1998 .

[37]  Carlos M. da Fonseca,et al.  Explicit inverse of a tridiagonal k−Toeplitz matrix , 2005, Numerische Mathematik.

[38]  Angel Plaza,et al.  On k-Fibonacci numbers of arithmetic indexes , 2009, Appl. Math. Comput..

[39]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[40]  Arthur T. Benjamin,et al.  A Combinatorial Approach to Hyperharmonic Numbers , 2003 .

[41]  Christoforos N. Hadjicostis,et al.  On solving composite power polynomial equations , 2005, Math. Comput..

[42]  C. Fonseca,et al.  Explicit inverses of some tridiagonal matrices , 2001 .

[43]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[44]  F. Y. Wu,et al.  GENERALIZED FIBONACCI NUMBERS AND DIMER STATISTICS , 2002 .

[45]  Ángel Plaza,et al.  The k-Fibonacci sequence and the Pascal 2-triangle , 2007 .

[46]  Ahmed Driss Aiat Hadj,et al.  On the powers and the inverse of a tridiagonal matrix , 2009, Appl. Math. Comput..

[47]  Zoltán Sasvári,et al.  The Dimension of the Linear Space Spanned by All Partial Derivatives of a Symmetric Polynomial , 2002 .

[48]  Osamu Saeki,et al.  Extending generalized Fibonacci sequences and their binet-type formula , 2006 .

[49]  Palmer R. Schlegel,et al.  The Inverse of a Tridiagonal Matrix , 1972 .

[50]  Ahmet Ali Öcal,et al.  On the representation of k-generalized Fibonacci and Lucas numbers , 2005, Appl. Math. Comput..

[51]  Richard A Dunlap LUCAS NUMBERS AND GENERALIZED FIBONACCI NUMBERS , 1997 .

[52]  Edward E. Allen,et al.  The Descent Monomials and a Basis for the Diagonally Symmetric Polynomials , 1994 .

[53]  I. MacDonald Schur functions: Theme and variations. , 1992 .

[54]  S. V. Lyudkovskii Compact relationships between invariants of classical lie groups and elementary symmetric polynomials , 1991 .

[55]  Y. Ikebe On inverses of Hessenberg matrices , 1979 .

[56]  Éric Schost,et al.  Evaluation Properties of Symmetric Polynomials , 2006, Int. J. Algebra Comput..

[57]  Moawwad E. A. El-Mikkawy On a connection between the Pascal, Vandermonde and Stirling matrices-II , 2003, Appl. Math. Comput..

[58]  M. S. Abdelmonem,et al.  CORRIGENDUM: The analytic inversion of any finite symmetric tridiagonal matrix , 1997 .

[59]  Emrah Kilic,et al.  The Binet formula, sums and representations of generalized Fibonacci p-numbers , 2008, Eur. J. Comb..

[60]  Moawwad E. A. El-Mikkawy,et al.  A Generalized Symbolic Thomas Algorithm , 2012 .

[61]  Sheng-liang Yang On the k-generalized Fibonacci numbers and high-order linear recurrence relations , 2008, Appl. Math. Comput..

[62]  Ahmed Driss Aiat Hadj,et al.  A fast numerical algorithm for the inverse of a tridiagonal and pentadiagonal matrix , 2008, Appl. Math. Comput..

[63]  Renzo Sprugnoli,et al.  On Some Alternative Characterizations of Riordan Arrays , 1997, Canadian Journal of Mathematics.

[64]  M. A. El-Shehawey,et al.  Analytical inversion of general periodic tridiagonal matrices , 2008 .

[65]  Giuseppe Fedele,et al.  A property of the elementary symmetric functions , 2005 .

[66]  Tetsuro Yamamoto,et al.  INVERSION FORMULAS FOR TRIDIAGONAL MATRICES WITH APPLICATIONS TO BOUNDARY VALUE PROBLEMS* , 2001 .

[67]  Moawwad E. A. El-Mikkawy,et al.  A new family of k-Fibonacci numbers , 2010, Appl. Math. Comput..

[68]  Joseph M. Santmyer A stirling like sequence of rational numbers , 1997, Discret. Math..

[69]  Ting-Zhu Huang,et al.  Estimates for the inverse elements of tridiagonal matrices , 2006, Appl. Math. Lett..

[70]  Davod Khojasteh Salkuyeh POSITIVE INTEGER POWERS OF THE TRIDIAGONAL TOEPLITZ MATRICES , 2006 .

[71]  Matthias Schork,et al.  Generalized Heisenberg algebras and k-generalized Fibonacci numbers , 2007, math-ph/0702078.

[72]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[73]  W. Mccoll,et al.  Analytical inversion of general tridiagonal matrices , 1997 .

[74]  Giuseppe Fedele,et al.  On the inversion of the Vandermonde matrix , 2006, Appl. Math. Comput..

[75]  C. Fischer,et al.  Properties of Some Tridiagonal Matrices and Their Application to Boundary Value Problems , 1969 .

[76]  Gi-Sang Cheon,et al.  Factorial Stirling matrix and related combinatorial sequences , 2002 .

[77]  V. Adamchik The Multiple Gamma Function and Its Application to Computation of Series , 2003, math/0308074.

[78]  Manfred Göbel Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials , 1999, Applicable Algebra in Engineering, Communication and Computing.

[79]  J. Petronilho,et al.  On some tridiagonal k -Toeplitz matrices: algebraic and analytical aspects. applications , 2005 .

[80]  Tomohiro Sogabe,et al.  On a problem related to the Vandermonde determinant , 2009, Discret. Appl. Math..

[81]  M. S. Abdelmonem,et al.  CORRIGENDUM: The analytic inversion of any finite symmetric tridiagonal matrix , 1997 .

[82]  Ira M. Gessel,et al.  On Miki's identity for Bernoulli numbers , 2005 .

[83]  Emrah Kilic On a constant-diagonals matrix , 2008, Appl. Math. Comput..

[84]  J. Demmel Numerical linear algebra , 1993 .

[85]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..