Exact Tests for Two-Way Contingency Tables with Structural Zeros

Fisher's exact test, named for Sir Ronald Aylmer Fisher, tests contingency tables for homogeneity of proportion. This paper discusses a generalization of Fisher's exact test for the case where some of the table entries are constrained to be zero. The resulting test is useful for assessing cases where the null hypothesis of conditional multinomial distribution is suspected to be false. The test is implemented in the form of a new R package, aylmer.

[1]  G. H. Freeman,et al.  Note on an exact treatment of contingency, goodness of fit and other problems of significance. , 1951, Biometrika.

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  Satoshi Aoki,et al.  Markov chain Monte Carlo exact tests for incomplete two-way contingency tables , 2005 .

[4]  B. Sinervo,et al.  The rock–paper–scissors game and the evolution of alternative male strategies , 1996, Nature.

[5]  Thomas Jech The Ranking of Incomplete Tournaments: A Mathematician's Guide to Popular Sports , 1983 .

[6]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[7]  R. A. Bradley Incomplete Block Rank Analysis: On the Appropriateness of the Model for a Method of Paired Comparisons , 1954 .

[8]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[9]  M. Kirkpatrick,et al.  Mate choice rules in animals , 2006, Animal Behaviour.

[10]  The distribution of the number of circular triads in paired comparisons , 1962 .

[11]  J. Chimka Categorical Data Analysis, Second Edition , 2003 .

[12]  P. Moran On the method of paired comparisons. , 1947, Biometrika.

[13]  Joseph Berkson,et al.  In dispraise of the exact test: Do the marginal totals of the 2X2 table contain relevant information respecting the table proportions? , 1978 .

[14]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[15]  Gerald Knezek,et al.  Accuracy of Kendall's chi-square approximation to circular triad distributions , 1998 .

[16]  Roger R. Davidson,et al.  A Bibliography on the Method of Paired Comparisons , 1973 .

[17]  Gregory R. Conner,et al.  An extension of Zermelo's model for ranking by paired comparisons , 2000, European Journal of Applied Mathematics.

[18]  T. Waite Intransitive preferences in hoarding gray jays (Perisoreus canadensis) , 2001, Behavioral Ecology and Sociobiology.

[19]  P. Colgan,et al.  Experimental analysis of food preference transitivity in fish , 1985 .

[20]  Harrison C. White,et al.  An Anatomy Of Kinship , 1963 .

[21]  Arthur W. Ghent,et al.  A Method for Exact Testing of 2X2, 2X3, 3X3, and Other Contingency Tables, Employing Binomial Coefficients , 1972 .

[22]  R. Hankin A Generalization of the Dirichlet Distribution , 2010 .

[23]  Marcus Frean,et al.  Rock–scissors–paper and the survival of the weakest , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[24]  I. Good On the Application of Symmetric Dirichlet Distributions and their Mixtures to Contingency Tables , 1976 .

[25]  H. A. David,et al.  The method of paired comparisons , 1966 .

[26]  E. Lehmann The Fisher, Neyman-Pearson Theories of Testing Hypotheses: One Theory or Two? , 1993 .

[27]  M. Milinski,et al.  Volunteering leads to rock–paper–scissors dynamics in a public goods game , 2003, Nature.

[28]  Robin K. S. Hankin,et al.  Urn Sampling Without Replacement: Enumerative Combinatorics in R , 2007 .

[29]  E. Zermelo Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung , 1929 .

[30]  G. Szabó,et al.  Evolutionary games on graphs , 2006, cond-mat/0607344.

[31]  M. Ryan,et al.  SEXUAL SELECTION IN FEMALE PERCEPTUAL SPACE: HOW FEMALE TUNGARA FROGS PERCEIVE AND RESPOND TO COMPLEX POPULATION VARIATION IN ACOUSTIC MATING SIGNALS , 2003, Evolution; international journal of organic evolution.

[32]  F. Rousset,et al.  AN EXACT TEST FOR POPULATION DIFFERENTIATION , 1995, Evolution; international journal of organic evolution.

[33]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .