Investigation on dynamic penetration of closed-cell aluminium foam using in situ deceleration measurement

[1]  Zhihua Wang,et al.  The dynamic response of sandwich panels with cellular metal cores to localized impulsive loading , 2016 .

[2]  Zhibin Li,et al.  Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading , 2015 .

[3]  G. Lu,et al.  A testing method for tearing energy of aluminum foams , 2014 .

[4]  Filipe Teixeira-Dias,et al.  Evaluation of the effect of the strain rate on the compressive response of a closed-cell aluminium foam using the split Hopkinson pressure bar test , 2013 .

[5]  Marco Peroni,et al.  Impact behaviour testing of aluminium foam , 2013 .

[6]  Genevieve Langdon,et al.  The blast and impact loading of aluminium foam , 2013 .

[7]  S. Reid,et al.  Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes , 2012 .

[8]  Zhihua Wang,et al.  Compressive behavior of closed-cell aluminum alloy foams at medium strain rates , 2011 .

[9]  Guoxing Lu,et al.  Compressive behaviour of closed-cell aluminium foams at high strain rates , 2010 .

[10]  R. Edwin Raj,et al.  Comparison of quasi-static and dynamic compression behavior of closed-cell aluminum foam , 2009 .

[11]  Guowei Ma,et al.  Modeling loading rate effect on crushing stress of metallic cellular materials , 2009 .

[12]  L. S. Ong,et al.  Dynamic indentation and penetration of aluminium foams , 2008 .

[13]  F. Hild,et al.  Shock enhancement of cellular structures under impact loading: Part I Experiments , 2007 .

[14]  Vikram Deshpande,et al.  The response of clamped sandwich plates with metallic foam cores to simulated blast loading , 2006 .

[15]  Norman A. Fleck,et al.  Performance of metallic honeycomb-core sandwich beams under shock loading , 2006 .

[16]  Kenji Higashi,et al.  Compressive response of a closed-cell aluminum foam at high strain rate , 2006 .

[17]  Stephen R Reid,et al.  Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations , 2005 .

[18]  Stephen R Reid,et al.  Penetration resistance of aluminium foam , 2005 .

[19]  U. Ramamurty,et al.  Impact energy absorption in an Al foam at low velocities , 2003 .

[20]  M. Forrestal,et al.  Penetration of concrete targets with deceleration-time measurements , 2003 .

[21]  Elias Siores,et al.  Compressive behaviour of aluminium foams at low and medium strain rates , 2002 .

[22]  James Lankford,et al.  High strain rate compression of closed-cell aluminium foams , 2000 .

[23]  N. Fleck,et al.  High strain rate compressive behaviour of aluminium alloy foams , 2000 .

[24]  John J Harrigan,et al.  Inertia effects in impact energy absorbing materials and structures , 1999 .

[25]  Stephen R Reid,et al.  Dynamic uniaxial crushing of wood , 1997 .

[26]  V.P.W. Shim,et al.  Dynamic Crushing of Strain-Softening Cellular Structures—A One-Dimensional Analysis , 1990 .

[27]  V.P.W. Shim,et al.  Microdynamics of Crushing in Cellular Solids , 1988 .

[28]  Zhihua Wang,et al.  Deformation and failure of clamped shallow sandwich arches with foam core subjected to projectile impact , 2013 .

[29]  V.P.W. Shim,et al.  Effects of nonhomogeneity, cell damage and strain-rate on impact crushing of a strain-softening cellular chain , 1992 .