Activity Enhancement of Dense Strontium-Doped Lanthanum Manganite Thin Films under Cathodic Polarization: A Combined AES and XPS Study

La 1-x Sr x MnO 3 cathodes used in solid oxide fuel cells have exhibited enhanced catalytic activity after polarization; however, the origin of this enhancement is not understood. In this study, dense La 0.8 Sr 0.2 MnO 3 thin-film microelectrodes fabricated by sputter- ing were cathodically or anodically polarized, and electrochemical impedance spectroscopy was used to examine the changes in impedance for oxygen reduction reaction (ORR) before and after polarization. Scanning electron and atomic force microscopy revealed surface microstructural changes after polarization. Surface compositions of La 0.8 Sr 0.2 MnO 3 thin films and microelectrodes were analyzed by auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), respectively. Annealed, quenched La 0.8 Sr 0.2 MnO 3 were found to have surfaces significantly enriched in La. Cathodic polarization considerably decreased electrode impedance, which was associated with reduced surface La and increased surface Sr and Mn fractions on the cathode adjacent to the three-phase boundaries. Surface particles of ∼150 to ∼240 nm appeared on the surface regions, where changes in the surface chemical composition of microelectrodes were detected. Acid-etching similarly lowered surface La contents. However, only cracks were found and no change in the surface composition was detected after anodic polarization. The mechanism of ORR activity enhancement induced by cathodic and anodic polarization was discussed.

[1]  T. Pagnier,et al.  Oxygen Reduction at La0.5Sr0.5MnO3 Thin Film/Yttria‐Stabilized Zirconia Interface Studied by Impedance Spectroscopy , 1994 .

[2]  Scott A. Barnett,et al.  Increased solid-oxide fuel cell power density using interfacial ceria layers , 1997 .

[3]  M. Fahlman,et al.  Evidence for Mn2+ ions at surfaces of La0. 7Sr 0.3MnO3 thin films , 2005 .

[4]  H. Inaba,et al.  Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1−xSrxMnO3 , 2000 .

[5]  P. Decorse,et al.  A comparative study of the surface and bulk properties of lanthanum-strontium-manganese oxides La1−xSrxMnO3±δ as a function of Sr-content, oxygen potential and temperature , 1999 .

[6]  S. Hashimoto,et al.  Structural, Thermal and Electrical Properties of Ce-Doped SrMnO3 , 2000 .

[7]  Tal Z. Sholklapper,et al.  Synthesis and Stability of a Nanoparticle-Infiltrated Solid Oxide Fuel Cell Electrode , 2007 .

[8]  Henricus J.M. Bouwmeester,et al.  Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia II. Electrode Kinetics , 1997 .

[9]  Tohru Kato,et al.  Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3 − x /Yttria‐Stabilized Zirconia Interface by Secondary‐Ion Mass Spectrometry , 1998 .

[10]  S. Jiang,et al.  Effect of polarization on the electrode behavior and microstructure of (La,Sr)MnO3 electrodes of solid oxide fuel cells , 2004 .

[11]  K. Wiik,et al.  Cation diffusion in La1−xSrxFeO3−δ, x = 0 and 0.1 measured by SIMS , 2007 .

[12]  R. A. De Souza,et al.  A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+δ , 2000 .

[13]  B. Steele,et al.  Oxygen transport in selected nonstoichiometric perovskite-structure oxides , 1992 .

[14]  W. Schaffrath,et al.  Diffusion controlled oxygen transport and stability at the perovskite/electrolyte interface , 2003 .

[15]  Koichi Yamada,et al.  Cathodic reaction mechanism for dense Sr-doped lanthanum manganite electrodes , 1996 .

[16]  Jonghee Han,et al.  Performance of anode-supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol–gel coating technique , 2002 .

[17]  F. Abraham,et al.  Surface segregation in binary solid solutions: A theoretical and experimental perspective , 1981 .

[18]  M. Nanko,et al.  Solid-state reaction kinetics of LaCrO3 from the oxides and determination of La3+ diffusion coefficient , 1998 .

[19]  Andrew Murray,et al.  Cell cycle: A snip separates sisters , 1999, Nature.

[20]  A. Hammouche,et al.  Crystallographic, thermal and electrochemical properties of the system La1−xSrxMnO3 for high temperature solid electrolyte fuel cells , 1989 .

[21]  Z. Ogumi,et al.  Preparation of Perovskite‐Type La1 − x Sr x MnO3 Films by Vapor‐Phase Processes and Their Electrochemical Properties , 1997 .

[22]  G. Petot-ervas,et al.  Kinetic demixing of ceramics in an electrical field , 1994 .

[23]  Wolfgang Göpel,et al.  Active Reaction Sites for Oxygen Reduction in La0.9Sr0.1,MnO3/YSZ Electrodes , 1995 .

[24]  J. Watts,et al.  An Introduction to Surface Analysis by XPS and AES , 1990 .

[25]  Joachim Maier,et al.  Physical Chemistry of Ionic Materials: Ions and Electrons in Solids , 2004 .

[26]  H. Tagawa,et al.  High temperature electrical properties of the perovskite-type oxide La1 − xSrxMnO3 − d , 1995 .

[27]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[28]  Meilin Liu,et al.  A photolithographic process for investigation of electrode reaction sites in solid oxide fuel cells , 2005 .

[29]  W. Jaegermann,et al.  X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3 , 2005 .

[30]  John B. Hudson,et al.  Surface Science: An Introduction , 1991 .

[31]  H. Anderson,et al.  Oxidation-reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure , 1989 .

[32]  A. Hammouche,et al.  Electrocatalytic Properties and Nonstoichiometry of the High Temperature Air Electrode La1 − x Sr x MnO3 , 1991 .

[33]  Jürgen Fleig,et al.  Geometry Dependence of Cathode Polarization in Solid Oxide Fuel Cells Investigated by Defined Sr ‐ Doped LaMnO3 Microelectrodes , 1999 .

[34]  L. D. Jonghe,et al.  Catalyst-infiltrated supporting cathode for thin-film SOFCs , 2005 .

[35]  S. Chan,et al.  Electrochemical behavior of La(Sr)MnO3 electrode under cathodic and anodic polarization , 2004 .

[36]  Meilin Liu,et al.  Characteristic Thickness for a Dense La[sub 0.8]Sr[sub 0.2]MnO[sub 3] Electrode , 2005 .

[37]  Z. Ogumi,et al.  Preparation of Perovskite‐Type La1 − x Sr x MnO3 Films by Vapor‐Phase Processes and Their Electrochemical Properties II. Effects of Doping Strontium to on the Electrode Properties , 1998 .

[38]  S. Jiang,et al.  Origin of the initial polarization behavior of Sr-doped LaMnO3 for O2 reduction in solid oxide fuel cells , 2001 .

[39]  M. Odgaard,et al.  SOFC cathode kinetics investigated by the use of cone shaped electrodes: The effect of polarization and mechanical load , 1996 .

[40]  E. Siebert,et al.  Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes , 2007 .

[41]  J. Vohs,et al.  Effect of Polarization on and Implications for Characterization of LSM-YSZ Composite Cathodes , 2004 .

[42]  H. Moon,et al.  Conditioning effects on La1−xSrxMnO3-yttria stabilized zirconia electrodes for thin-film solid oxide fuel cells , 2002 .

[43]  Tohru Kato,et al.  Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique , 2002 .

[44]  Tal Z. Sholklapper,et al.  Nanostructured Solid Oxide Fuel Cell Electrodes , 2007 .

[45]  H. Fukunaga,et al.  Cathodic reaction mechanism of dense La0.6Sr0.4CoO3 and La0.81Sr0.09MnO3 electrodes for solid oxide fuel cells , 2000 .

[46]  A. Virkar,et al.  Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters , 2005 .

[47]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part II. Oxygen surface exchange , 1999 .

[48]  S. McIntosh,et al.  Performance and Activation Behavior of Surface-Doped Thin-Film La0.8Sr0.2MnO3 − δ Cathodes , 2008 .

[49]  K. Wiik,et al.  Kinetic demixing and decomposition of oxygen permeable membranes , 2006 .

[50]  H. Inaba,et al.  Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1−xSrxMnO3+d , 2000 .

[51]  S. Jiang,et al.  Sintering and grain growth of (La,Sr)MnO3 electrodes of solid oxide fuel cells under polarization , 2005 .

[52]  Mitsuharu Konuma,et al.  Strong Performance Improvement of La0.6Sr0.4Co0.8Fe0.2O3 − δ SOFC Cathodes by Electrochemical Activation , 2005 .

[53]  Andreas Mai,et al.  Electrode activation of anode-supported SOFCs with LSM- or LSCF-type cathodes , 2006 .

[54]  S. Jiang,et al.  Effect of Polarization on the Interface Between (La,Sr)MnO3 Electrode and Y2O3-ZrO2 Electrolyte , 2005 .

[55]  S. Barnett,et al.  An Octane-Fueled Solid Oxide Fuel Cell , 2005, Science.

[56]  H. Habermeier,et al.  The geometry dependence of the polarization resistance of Sr-doped LaMnO3 microelectrodes on yttria-stabilized zirconia , 2002 .

[57]  Bilge Yildiz,et al.  Probing Oxygen Reduction Reaction Kinetics of Sr-Doped LaMnO3 Supported on Y2O3-Stabilized ZrO2 EIS of Dense, Thin-Film Microelectrodes , 2007 .

[58]  A. Mcevoy,et al.  A study on the La1 − xSrxMnO3 oxygen cathode , 1996 .

[59]  Stuart B. Adler,et al.  Mechanisms and Rate Laws for Oxygen Exchange on Mixed-Conducting Oxide Surfaces , 2007, ECS Transactions.

[60]  A. Virkar,et al.  Performance of Solid Oxide Fuel Cells with LSGM-LSM Composite Cathodes , 2002 .

[61]  N. Sakai,et al.  Cation transport behavior in SOFC cathode materials of La0.8Sr0.2CoO3 and La0.8Sr0.2FeO3 with perovskite structure , 2007 .

[62]  H. Bouwmeester,et al.  Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia I. Three‐Phase Boundary Area , 1997 .

[63]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part I. Oxygen tracer diffusion , 1998 .

[64]  Junichiro Mizusaki,et al.  A Chemical Diffusion‐Controlled Electrode Reaction at the Compact La1 − x Sr x MnO3/Stabilized Zirconia Interface in Oxygen Atmospheres , 1996 .

[65]  Masanori Kato,et al.  Crystal growth and characterization of La1−xMxMnO3 (M = Ca, Sr) , 1987 .

[66]  S. Jiang,et al.  Activation, microstructure, and polarization of solid oxide fuel cell cathodes , 2006 .

[67]  S. Liou,et al.  Surface segregation and restructuring of colossal-magnetoresistant manganese perovskites La 0.65 Sr 0.35 MnO 3 , 2000 .

[68]  Jürgen Fleig,et al.  Quantitative Comparison of Mixed Conducting SOFC Cathode Materials by Means of Thin Film Model Electrodes , 2007 .

[69]  San Ping Jiang,et al.  The electrochemical performance of LSM/zirconia–yttria interface as a function of a-site non-stoichiometry and cathodic current treatment , 1999 .

[70]  S. Jiang,et al.  Observation of structural change induced by cathodic polarization on (La,Sr)MnO3 electrodes of solid oxide fuel cells , 2003 .

[71]  S. Jiang,et al.  A mechanistic study on the activation process of (La, Sr)MnO3 electrodes of solid oxide fuel cells , 2006 .

[72]  Subhash C. Singhal,et al.  Estimation of Charge-Transfer Resistivity of La0.8Sr0.2MnO3 Cathode on Y 0.16Zr0.84 O 2 Electrolyte Using Patterned Electrodes , 2005 .

[73]  J. Koehler,et al.  Space Charge in Ionic Crystals. I. General Approach with Application to NaCl , 1965 .

[74]  H. Tagawa,et al.  Nonstoichiometry and thermochemical stability of the perovskite-type La1−xSrxMnO3−δ , 1991 .