Numerical model reduction of 2D steady incompressible laminar flows: Application on the flow over a backward-facing step

The numerical solution of most fluid mechanics problems usually needs such a fine mesh that the associated computational times become non-negligible parts in any design process. In order to couple numerical modelling schemes with inversion or control algorithms, the size of such models needs to be highly reduced. The identification method is a way to build low-order models that fit with the original ones. The laminar flow over a backward-facing step is used as a test case. Presented solutions are found to be in good agreement with experimental and numerical results found in the literature.

[1]  R. Pasquetti,et al.  Model reduction for thermal diffusion: application of the Eitelberg, Marshall and aggregation methods to a heat transmission tube model , 1990 .

[2]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[3]  D. Veyret,et al.  A Modal Identification Method To Reduce A High-Order Model: Application To Heat Conduction Modelling , 1997 .

[4]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[5]  R. Henderson,et al.  Three-dimensional instability in flow over a backward-facing step , 2000, Journal of Fluid Mechanics.

[6]  Y. Favennec,et al.  Reduced modelling through identification on 2D incompressible laminar flows , 2009 .

[7]  D. Gartling A test problem for outflow boundary conditions—flow over a backward-facing step , 1990 .

[8]  Luc Tartar,et al.  An Introduction to Navier-Stokes Equation and Oceanography , 2006 .

[9]  E. Erturk,et al.  Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions , 2008 .

[10]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[11]  I. E. Barton,et al.  The entrance effect of laminar flow over a backward-facing step geometry , 1997 .

[12]  P. Oswald Remarks on Multilevel Bases for Divergence-Free Finite Elements , 2004, Numerical Algorithms.

[13]  B. Armaly,et al.  Experimental and theoretical investigation of backward-facing step flow , 1983, Journal of Fluid Mechanics.

[14]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[15]  Lawrence Sirovich,et al.  New Perspectives in Turbulence , 2011 .

[16]  O. Pironneau Finite Element Methods for Fluids , 1990 .

[17]  J. Koseff,et al.  A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates , 1994 .

[18]  Daniel Petit,et al.  Comparison between the modal identification method and the POD‐Galerkin method for model reduction in nonlinear diffusive systems , 2006 .

[19]  Daniel Petit,et al.  Model Reduction for Heat Conduction with Radiative Boundary Conditions using the Modal Identification Method , 2007 .

[20]  Philip E. Gill,et al.  Practical optimization , 1981 .

[21]  Zhaojun Bai,et al.  The important modes of subsystems: A moment‐matching approach , 2007 .

[22]  Andrew J. Newman,et al.  Model Reduction via the Karhunen-Loeve Expansion Part I: An Exposition , 1996 .

[23]  Y. Favennec,et al.  The adjoint method coupled with the modal identification method for nonlinear model reduction , 2006 .

[24]  Frédéric Hecht,et al.  NSP1B3 : un logiciel pour resoudre les equations de Navier Stokes incompressible 3D , 1991 .

[25]  Kazufumi Ito,et al.  Optimal Control of Thermally Convected Fluid Flows , 1998, SIAM J. Sci. Comput..

[26]  François Bay,et al.  Induction heating processes optimization a general optimal control approach , 2003 .

[27]  M. Manzan,et al.  Finite element solution of the streamfunction‐vorticity equations for incompressible two‐dimensional flows , 1994 .

[28]  S. Ravindran,et al.  A Reduced-Order Method for Simulation and Control of Fluid Flows , 1998 .

[29]  L. Sirovich Empirical Eigenfunctions and Low Dimensional Systems , 1991 .

[30]  A. Spence,et al.  Is the steady viscous incompressible two‐dimensional flow over a backward‐facing step at Re = 800 stable? , 1993 .

[31]  J. Lumley Stochastic tools in turbulence , 1970 .