Inexact restoration method for minimization problems arising in electronic structure calculations

An inexact restoration (IR) approach is presented to solve a matricial optimization problem arising in electronic structure calculations. The solution of the problem is the closed-shell density matrix and the constraints are represented by a Grassmann manifold. One of the mathematical and computational challenges in this area is to develop methods for solving the problem not using eigenvalue calculations and having the possibility of preserving sparsity of iterates and gradients. The inexact restoration approach enjoys local quadratic convergence and global convergence to stationary points and does not use spectral matrix decompositions, so that, in principle, large-scale implementations may preserve sparsity. Numerical experiments show that IR algorithms are competitive with current algorithms for solving closed-shell Hartree-Fock equations and similar mathematical problems, thus being a promising alternative for problems where eigenvalue calculations are a limiting factor.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[3]  L. Martínez,et al.  Density-based Globally Convergent Trust-region Methods for Self-consistent Field Electronic Structure Calculations , 2006 .

[4]  Emanuel H. Rubensson,et al.  Density matrix purification with rigorous error control. , 2008, The Journal of chemical physics.

[5]  K. Jittorntrum Solution point differentiability without strict complementarity in nonlinear programming , 1984 .

[6]  P. Lions,et al.  Molecular simulation and related topics: some open mathematical problems , 2008 .

[7]  R. Mcweeny Some Recent Advances in Density Matrix Theory , 1960 .

[8]  Andreas Fischer,et al.  A new line search inexact restoration approach for nonlinear programming , 2010, Comput. Optim. Appl..

[9]  William W. Hager,et al.  Multilevel domain decomposition for electronic structure calculations , 2007, J. Comput. Phys..

[10]  J. M. Martínez,et al.  Local Convergence of an Inexact-Restoration Method and Numerical Experiments , 2005 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[13]  William W. Hager,et al.  Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent , 2006, TOMS.

[14]  Juan C. Meza,et al.  A constrained optimization algorithm for total energy minimization in electronic structure calculations , 2005, J. Comput. Phys..

[15]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[16]  E. Cancès,et al.  Computational quantum chemistry: A primer , 2003 .

[17]  W. Marsden I and J , 2012 .

[18]  Márcia A. Gomes-Ruggiero,et al.  A numerical study on large-scale nonlinear solvers , 1996 .

[19]  R. Fletcher Practical Methods of Optimization , 1988 .

[20]  C. Yal Euler Discretization and Inexact Restoration for Optimal Control , 2006 .

[21]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[22]  R. Andreani,et al.  On the Relation between Constant Positive Linear Dependence Condition and Quasinormality Constraint Qualification , 2005 .

[23]  C. Bris,et al.  Can we outperform the DIIS approach for electronic structure calculations , 2000 .

[24]  Emanuel H. Rubensson,et al.  Determination of the chemical potential and HOMO/LUMO orbitals in density purification methods , 2006 .

[25]  J. M. Martínez,et al.  Inexact-Restoration Algorithm for Constrained Optimization1 , 2000 .

[26]  Clóvis C. Gonzaga,et al.  A Globally Convergent Filter Method for Nonlinear Programming , 2003, SIAM J. Optim..

[27]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[28]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[29]  José Mario Martínez,et al.  Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..

[30]  Laquai Frederic,et al.  低濃度のPt(II)オクタエチルポルフィリンをドープした青色発光スピロビフルオレン‐アントラセン共重合体における効率的なアップコンバージョン蛍光 , 2005 .

[31]  Claude Le Bris,et al.  Méthodes mathématiques en chimie quantique: une introduction , 2006 .

[32]  Roberto Andreani,et al.  An inexact-restoration method for nonlinear bilevel programming problems , 2009, Comput. Optim. Appl..

[33]  Zengxin Wei,et al.  On the Constant Positive Linear Dependence Condition and Its Application to SQP Methods , 1999, SIAM J. Optim..

[34]  Claude Le Bris,et al.  Computational chemistry from the perspective of numerical analysis , 2005, Acta Numerica.

[35]  Gongyun Zhao,et al.  Representing the space of linear programs as the Grassmann manifold , 2009, Math. Program..

[36]  Benar Fux Svaiter,et al.  A Practical Optimality Condition Without Constraint Qualifications for Nonlinear Programming , 2003 .

[37]  J. M. Martínez,et al.  Inexact spectral projected gradient methods on convex sets , 2003 .

[38]  José Mario Martínez,et al.  Globally convergent trust-region methods for self-consistent field electronic structure calculations. , 2004, The Journal of chemical physics.

[39]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[40]  Paweł Sałek,et al.  The trust-region self-consistent field method: towards a black-box optimization in Hartree-Fock and Kohn-Sham theories. , 2004, The Journal of chemical physics.

[41]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[42]  Paweł Sałek,et al.  The trust-region self-consistent field method in Kohn-Sham density-functional theory. , 2005, The Journal of chemical physics.

[43]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[44]  J. Olsen,et al.  Molecular electronic-structure theory , 2000 .

[45]  José Mario Martínez,et al.  Algorithm 813: SPG—Software for Convex-Constrained Optimization , 2001, TOMS.

[46]  J. M. Martínez,et al.  Inexact-Restoration Method with Lagrangian Tangent Decrease and New Merit Function for Nonlinear Programming , 2001 .

[47]  G. Scuseria,et al.  Purification of the first-order density matrix using steepest descent and Newton-Raphson methods , 2002 .

[48]  David E. Manolopoulos,et al.  Canonical purification of the density matrix in electronic-structure theory , 1998 .

[49]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[50]  James O. Jensen,et al.  Evaluation of one‐electron integrals for arbitrary operators V(r) over Cartesian Gaussians: Application to inverse‐square distance and Yukawa operators , 1993, J. Comput. Chem..

[51]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[52]  Emanuel H. Rubensson,et al.  Systematic sparse matrix error control for linear scaling electronic structure calculations , 2005, J. Comput. Chem..

[53]  R. Janin Directional derivative of the marginal function in nonlinear programming , 1984 .